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PREFACE TO THE
SECOND EDITION

As the first edition of this book has been well received through five printings
over a period of more than thirty years, we have decided to leave the mate-
rial of the first edition essentially unchanged — barring a few necessary up-
dates. On the other hand, it appeared worthwhile to extend the existing text
by adding a reasonably informative introduction to C*— and W *-algebras.
The theory of these algebras seems to be of increasing importance in math-
ematics and theoretical physics, while being intimately related to topological
vector spaces and their orderings—the prime concern of this text.

The authors wish to thank J. Schweizer for a careful reading of Chapter
VI, and the publisher for their care and assistance.

Tibingen, Germany H. H. Schaefer
Spring 1999 M. P. Wolff



Preface

The present book is intended to be a systematic text on topological vector
spaces and presupposes familiarity with the elements of general topology and
linear algebra. The author has found it unnecessary to rederive these results,
since they are equally basic for many other areas of mathematics, and every
beginning graduate student is likely to have made their acquaintance. Simi-
larly, the elementary facts on Hilbert and Banach spaces are widely known
and are not discussed in detail in this book, which is mainly addressed to those
readers who have attained and wish to get beyond the introductory level.

The book has its origin in courses given by the author at Washington State
University, the University of Michigan, and the University of Tiibingen in
the years 1958-1963. At that time there existed no reasonably ccmplete text on
topological vector spaces in English, and there seemed to be a genuine need
for a book on this subject. This situation changed in 1963 with the appearance
of the book by Kelley, Namioka e al. [1] which, through its many elegant
proofs, has had some influence on the final draft of this manuscript. Yet the
two books appear to be sufficiently different in spirit and subject matter to
justify the publication of this manuscript; in particular, the present book
includes a discussion of topological tensor products, nuclear spaces, ordered
topological vector spaces, and an appendix on positive operators. The author
is also glad to acknowledge the strong influence of Bourbaki, whose mono-
graph [7], [8] was (before the publication of Kéthe [5]) the only modern
treatment of topological vector spaces in printed form.

A few words should be said about the organization of the book. There is a
preliminary chapter called “Prerequisites,”” which is a survey aimed at
clarifying the terminology to be used and at recalling basic definitions and
facts to the reader’s mind. Each of the five following chapters, as well as the
Appendix, is divided into sections. In each section, propositions are marked
u.v, where u is the section number, v the proposition number within the

vi



PREFACE vii

section. Propositions of special importance are additionally marked
“Theorem.” Cross references within the chapter are (u.v), outside the chapter
(r, u.v), where r (roman numeral) is the number of the chapter referred to.
Each chapter is preceded by an introduction and followed by exercises. These
“ Exercises >’ (a total of 142) are devoted to further results and supplements, in
particular, to examples and counter-examples. They are not meant to be
worked out one after the other, but every reader should take notice of them
because of their informative value. We have refrained from marking some of
them as difficult, because the difficulty of a given problem is a highly subjective
matter. However, hints have been given where it seemed appropriate, and
occasional references indicate literature that may be needed, or at
least helpful. The bibliography, far from being complete, contains
(with few exceptions) only those items that are referred to in the text.

I wish to thank A. Pietsch for reading the entire manuscript, and A. L.
Peressini and B. J. Walsh for reading parts of it. My special thanks are
extended to H. Lotz for a close examination of the entire manuscript, and for
many valuable discussions. Finally, I am indebted to H. Lotz and A. L.
Peressini for reading the proofs, and to the publisher for their care and
cooperation.

H. H.S.

Tiibingen, Germany
December, 1964
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PREREQUISITES

A formal prerequisite for an intelligent reading of this book is. familiarity
with the most basic facts of set theory, general topology, and linear algebra.
The purpose of this preliminary section is not to establish these results but
to clarify terminology and notation, and to give the reader a survey of the
material that will be assumed as known in the sequel. In addition, some of
the literature is pointed out where adequate information and further refer-
ences can be found.

Throughout the book, statements intended to represent definitions are
distinguished by setting the term being defined in bold face characters.

A. SETS AND ORDER

1. Sets and Subsets. Let X,Y be sets. We use the standard notations x € X
for “x is an element of X, X < Y (or Y > X) for “ X is a subset of Y,
X=Yfor “Xc Yand Yo X”. If (p) is a proposition in terms of given
relations on X, the subset of all x e X for which (p) is true is denoted by
{x € X: (p)x} or, if no confusion is likely to occur, by {x: (p)x}. x ¢ X means
“x is not an element of X”’. The complement of X relative to Y is the set
{x€ Y: x ¢ X}, and denoted by Y ~ X. The empty set is denoted by ¢ and
considered to be a finite set; the set.(singleton) containing the single element
x is denoted by {x}. If (p,), (p,) are propositions in terms of given relations
on X, (py) = (p,) means “(p,) implies (p,)”, and (p,) <>(p,) means “(p,) is
equivalent with (p,)”’. The set of all subsets of X is denoted by P(X).

2. Mappings. A mapping f of X into Y is denoted by fi X — Y or by
x — f(x). X is called the domain of f, the image of X under f, the range of f;
the graph of fis the subset G, = {(x,f(x)): x € X} of X-x Y. The mapping of
the set P(X) of all subsets of X into P(Y) that is associated with f, is also
denoted by f; that is, for any 4 =« X we write f(4) to denote the set

1
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2 PREREQUISITES

{f(x): xe A} = Y. The associated map of P(Y) into P(X) is denoted by
f~1; thus for any Bc Y, f~Y(B) ={xe X: f(x) e B}. If B={b}, we write
f~Y(b) in place of the clumsier (but more precise) notation f~!({b}). If
fiX—>Y and ¢g: Y>Z are maps, the composition map x— g(f(x)) is
denoted by g o f.

A map f: X — Y is biunivocal (one-to—one, injective) if /(x,) = f(x,) implies
Xy = X,; it is onto Y (surjective) if f(X) = Y. A map f which is both injective
and surjective is called bijective (or a bijection).

Iff: X— Yisamap and 4 < X, the map g : 4 — Y defined by g(x) = f(x)
whenever x € A is called the restriction of f'to 4 and frequently denoted by f,.
Conversely, fis called an extension of g (to X with values in Y).

3. Families. If A is a non-empty set and X is a set, a mapping o — x(o)
of A into X is also called a family in X; in practice, the term family is used for
mappings whose domain A enters only in terms of its set theoretic properties
(i.e., cardinality and possibly order). One writes, in this case, x, for x(«) and
denotes the family by {x,: « € A}. Thus every non-empty set X can be viewed
as the family (identity map) x — x(x € X); but it is important to notice that
if {x,: a € A} is a family in X, then « # f does not imply x,# Xz A sequence
is a family {x,ne N}, N ={1, 2, 3, ...} denoting the set of natural numbers.
If confusion with singletons is unlikely and the domain (index set) A is clear
from the context, a family will sometimes be denoted by {x,} (in particular, a
sequence by {x,}).

4. Set Operations. Let {X,: « € A} be a family of sets. For the union of this
family, we use the notations J{X,: « € A}, U X,, or briefly (J,X, if the

xcA

index set A is clear from the context. If {X,: n'€ N} is a sequence of sets we
k

o0
also write |J X, and if {X}, ..., X,} is a finite family of sets we write ()X, or
1 1

X; U X, U...U X, Similar notations are used for intersections and Car-
tesian products, with () replaced by () and [] respectively. If {X,: « € A} is
a family such that X, = X for all « € A, the product | [, X, is also denoted by
XA

If R is an equivalence relation (i.e., a reflexive, symmetric, transitive binary
relation) on the set X, the set of equivalence classes (the quotient set) by R is
denoted by X/R. The map x — £ (also denoted by x — [x]) which orders to
each x its equivalence class £ (or [x]), is called the canonical (or quotient) map
of X onto X/R.

5. Orderings. An ordering (order structure, order) on a set X is a binary
relation R, usually denoted by <, on X which is reflexive, transitive, and anti-
symmetric (x £ y and y < x imply x = »). The set X endowed with an order
< is called an ordered set. We write y = x to mean x < y, and x < y to mean
x < y but x # y (similarly for x > ). If R; and R, are orderings of X, we say
that R, is finer than R, (or that R, is coarser than R;) if x(R,)y implies
x(R,)y. (Note that this defines an ordering on the set of all orderings
of X.)
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Let (X, £) be an ordered set. A subset 4 -of X is majorized if there exists
a, € X such that a < a, whenever ae 4; a, is a majorant (upper bound) of 4.
Dually, A is minorized by q, if a, < a whenever a € 4; then a, is a minorant
(lower bound) of 4. A subset 4 which is both majorized and minorized, is
called order bounded. If A4 is majorized and there exists a majorant a, such
that a, < b for any majorant b of 4, then a, is unique and called the supremum
(least upper bound) of A4; the notation is @, = sup 4. In a dual fashion, one
defines the infimum (greatest lower bound) of 4, to be denoted by inf 4. For
each pair (x, y) € X x X, the supremum and infimum of the set {x, y} (when-
ever they exist) are denoted by sup(x, y) and inf(x, y) respectively. (X, <) is
called a lattice if for each pair (x, y), sup(x, y) and inf(x, y) exist, and (X, <)is
called a complete lattice if sup 4 and inf A exist for every non-empty subset
A = X. (In general we avoid this latter terminology because of the possible
confusion with uniform completeness.) (X, <) is totally ordered if for each
pair (x, ), at least one of the relations x £ y and y < x is true. An element
x € X is maximal if x < y implies x = y.

Let (X, £) be a non-empty ordered set. X is called directed under <
(briefly, directed (<)) if every subset {x, y} (hence each finite subset) possesses
an upper bound. If x, € X, the subset {x € X : xq < x} is called a section of X
(more precisely, the section of X generated by x,). A family {y,:xe A} is.
directed if A is a directed set; the sections of a directed family are the sub-
families {y,: ay < o}, for any «, € A.

Finally, an ordered set X is inductively ordered if each totally ordered
subset possesses an upper bound. In each inductively ordered set, there exist
maximal elements (Zorn’s lemma). In most applications of Zorn’s lemma,
the set in question is a family of subsets of a set .S, ordered by set theoretical
inclusion <.

6. Filters. Let X be a set. A set § of subsets of X is called a filter on X if
it satisfies the following axioms:

(D) F#Tand J ¢ §.
(2) FeF and F = G < X implies G € §.
(3) FeFand Ge § implies FN Ge §.

A set B of subsets of X is a filter base if (1') B # f and & ¢ B, and (2°) if
B, €B and B, € B there exists B; € B such that By = B; n B,. Every filter
base B generates a unique filter § on X such that Fe & if and only .if
B c F for at least one Be B; B is called a base of the filter §. The set of all
filters on a non-empty set X is inductively ordered by the relation §, = &,
(set theoretic inclusion of R(X)); F, = &, is expressed by saying that §F, is
coarser than ,, or that &, is finer than &, . Every filter on X which is maximal
with respect to this ordering, is called an ultrafilter on X; by Zorn’s lemma,
for each filter & on X there exists an ultrafilter finer than §: If {x,: a € A}
is a directed family in X, the ranges of the sections of this family form a filter
base on X; the corresponding filter is called the section filter of the family.



4 PREREQUISITES

An elementary filter is the section filter of a sequence {x,:ne N} in X (N
being endowed with its usual order).

Literature. Sets: Bourbaki [1], Halmos [3]. Filters: Bourbaki [4], Bushaw
[1]. Order: Birkhoff [1], Bourbaki [1].

B. GENERAL TOPOLOGY

1. Topologies. Let X be a set, ® a set of subsets of X invariant under finite
intersections and arbitrary unions; it follows that X € ®, since X is the inter-
section of the empty subset of &, and that ¥ € ®, since ¢ is the union of
the empty subset of . We say that ® defines a topology T on X; structurized
in this way, X is called a topological space and denoted by (X, ) if reference
to Tis desirable. The sets G € G are called open, their complements F= X ~ G
are called closed (with respect to ¥). Given 4 < X, the open set 4 (or int A)
which is the union of all open subsets of A4, is called the interior of A4; the
closed set A4, intersection of all closed sets containing A4, is called the closure
of A. An element x € A is called an interior point of A (or interior to A4), an
element x € A4 is called a contact point (adherent point) of A. If 4, B are subsets
of X, B is dense relative to 4 if A = B (dense in A if B A'and 4 < B). A
topological space X is separable if X contains a countable dense subset; X is
connected if X is not the union of two disjoint non-empty open subsets
(otherwise, X is disconnected).

Let X be a topological space. A subset U < X is a neighborhood of x if
x € U, and a neighborhood of 4 if x € 4 implies x € U. The set of all neigh-
borhoods of x (respectively, of A) is a filter on X called the neighborhood
filter of x (respectively, of 4); each base of this filter is a neighborhood base
of x (respectively, of 4). A bijection f of X onto another topological space ¥
such that f(4) is open in Y if and only if 4 is open in X, is called a homeo-
morphism; X and Y are homeomorphic if there exists a homeomorphism of
X onto Y. The discrete topology on X is the topology for which every subset
of X is open; the trivial topology on X is the topology whose only open sets
are @ and X.

2. Continuity and Convergence. Let X,Y be topological spaces and let
f:X— Y. fis continuous at x € X if for each neighborhood V of y = f(x),
f~YV) is a neighborhood of x (equivalently, if the filter on Y generated by
the base f() is finer than B, where 2 is the neighborhood filter of x, B the
neighborhood filter of y). fis continuous on X into Y (briefly, continuous) if
£ is continuous at each x € X (equivalently, if /~'(G) is open in X for each
open G < Y). If Z is also a topological space and f: X - Y and g: Y —» Z are
continuous, then g o f: X — Z is continuous.

A filter & on a topological space X is said to converge to x € X if & is finer
than the neighborhood filter of x. A sequence (more generally, a directed
family) in X converges to x € X if its section filter converges to x. If also ¥
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i$ a topological space and § is a filter (or merely a filter base) on X, and if
f: X— Y is a map, then f is said to converge to y € Y along § if the filter
generated by f(§) converges to y. For example, f is continuous at x € X if
and only if f converges to y = f(x) along the neighborhood filter of x. Given a
filter § on X and x € X, x is a cluster point (contact point, adherent point) of
& if x e F for each Fe §. A cluster point of a sequence (more generally, of a
directed family) is a cluster point of the section filter of this family.

3. Comparison of Topologies. If X is a set and ¥, I, are topologies on X,
we say that T, is finer than‘T, (or T, coarser than I,) if every T,-open set
is T,-open (equivalently, if every I,-closed set is I,-closed). (If &, and 6,
are the respective families of open sets in X, this amounts to the relation
6, = ®, in P(P(X)).) Let {T,: « € A} be a family of topologies on X. There
exists a finest topology ¥ on X which is coarser than each T (x € A); a set G
is T-open if and only if G is T,-open for each a. Dually, there exists a coarsest
topology ¥, which is finer than each T,(a € A). If we denote by G the set
of all finite intersections of sets open for some ¥, the set ®, of all unions of
sets in G, constitutes the Ty-open sets in X. Hence with respect to the relation
“I, is finer than T, ”, the set of all topologies on X is a complete lattice;
the coarsest topology on X is the trivial topology, the finest topology is the
discrete topology. The topology T is the greatest lower bound (briefly, the
lower bound) of the family {T,: « € A}; similarly, T, is the upper bound of the
family {T,: « € A}.

One derives from this two general methods of defining a topology (Bourbaki
[4]). Let X be a set, {X,: « € A} a family of topological spaces. If { f,: « € A}
is a family of mappings, respectively of X into X,, the projective topology
(kernel topology) on X with respect to the family {(X,, f,): « € A} is the coarsest
topology for which each £, is continuous. Dually, if {g,: « € A} is a family of
mappings, respectively of X, into X, the inductive topology (hull topology)
with respect to the family {(X,, g,): « € A} is the finest topology on X for
which each g, is continuous. (Note that each £, is continuous for the discrete
topology on X, and that each g, is continuous for the trivial topology on X.)
If A ={1} and T, is the topology of X, the projective topology on X with
respect to (Xj, f,) is called the inverse image of T, under f;, and the inductive
topology with respect to (X7, g;) is called the direct image of T, under g,.

4. Subspaces, Products, Quotients. If (X, ) is a topological space, 4 a
subset of X, f the canonical imbedding 4 — X, then the induced topology on
A is the inverse image of T under f. (The open subsets of this topology are
the intersections with A of the open subsets of X.) Under the induced
topology, A4 is called a topological subspace of X (in*general, we shall avoid
this terminology because of possible confusion with vector subspaces). If
(X, T) is a topological space, R an equivalence relation on X, g the canonical
map X — X/R, then the direct image of T under g is called the quotient
(topology) of I; under this topology, X/R is the topological quotient of
X by R.
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Let {X,: « € A} be a family of topological spaces, X their Cartesian product,
f, the projection of X onto X,. The projective topology on X with respect to
the family {(X,,f,): 2 € A} is called the product topology on X. Under this
topology, X is called the topological product (briefly, product) of the family
{X,;: a€A}.

Let X,Y be topological spaces, f a mapping of X into Y. We say that fis
open (or an open map) if for each open set G = X, f(G) is open 'n the topo-
logical subspace f(X) of Y. fis called closed (a closed map) if the graph of
f'is a closed subset of the topological product X x Y.

5. Separation Axioms. Let X be a topological space. X is a Hausdorff (or
separated) space if for each pair of distinct points x,y there are respective
neighborhoods U,, U, such that U, n U, = ¢Z. If (and only if) X is separated,
each filter & that converges in X, converges to exactly one x € X; x is called
the limit of §. X is called regular if it is separated and each point possesses a
base of closed neighborhoods; X is called normal if it is separated and for
each pair A4, B of disjoint closed subsets of X, there exists a neighborhood U
of 4 and a neighborhood V of B such that Un V = (.

A Hausdorff topological space X is normal if and only if for each pair
A, B of disjoint closed subsets of X, there exists a continuous function f on
X into the real interval [0,1] (under its usual topology) such that f(x) =0
whenever x € A4, f(x) = 1 whenever x € B (Urysohn’s theorem).

A separated space X such that for each closed subset 4 and each b ¢ 4,
there exists a continuous function f: X — [0,1] for which /() = 1 and f(x) = 0
whenever x € 4, is called completely regular; clearly, every normal space is
completely regular, and every completely regular space is regular.

6. Uniform Spaces. Let X be a set. For arbitrary subsets W, V of X x X,
we write W™ = {(y, x): (x,y) € W}, and Vo W ={(x, z): there exists ye X
such that (x,y)e W, (»,z) e V}. The set A= {(x, x): x€ X} is called the
diagonal of X x X. Let 2 be a filter on X x X satisfying these axioms:

(1) Each W e W contains the diagonal A.
(2) WeM implies W' e .
(3) For each W € W, there exists V € M such that VoV W.

We say that the filter 28 (or any one of its bases) defines a uniformity (or
uniform structure) on X, each We M being called a vicinity (entourage) of
the uniformity. Let ® be the family of all subsets G of X such that xe G
implies the existence of W e W satisfying {y: (x,y)e W} < G. Then ® is
invariant under finite intersections and arbitrary unions, and hence defines
a topology T on X such that for each x € X, the family W(x) = {y: (x, y) e W},
where W runs through 2B, is a neighborhood base of x. The space (X, 2B),
endowed with the topology T derived from the uniformity 2, is called a
uniform space. A topological space X is uniformisable if its topology can be
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derived from a uniformity on X; the reader should be cautioned that, in
general, such a uniformity is not unique.

A uniformity is separated if its vicinity filter satisfies the additional axiom

@ N{W: We} =A.

(4) is a necessary and sufficient condition for the topology derived from the
uniformity to be a Hausdorff topology. A Hausdorff topological space is
uniformisable if and only if it is completely regular.

Let X, Y be uniform spaces. A mapping f: X — Y is uniformly continuous
if for each vicinity ¥ of Y, there exists a vicinity U of X such that (x,y) e U
implies (f(x), f(»)) € V. Each uniformly continuous map is continuous. The
uniform spaces X, Y are isomorphic if there exists a bijection f of X onto Y
such that both fand f ~! are uniformly continuous; fitself is called a uniform
isomorphism.

If MW, and W, are two filters on X x X, each defining a uniformity on the
set X, and if W, < W,, we say that the uniformity defined by I, is coarser
than that defined by I,. If X is a set, {X,: « € A} a family of uniform spaces
and f,(x € A) are mappings of X into X, then there exists a coarsest uniformity
on X for which each f(« € A) is uniformly continuous. In this way, one
defines the product uniformity on X = [ [, X, to be the coarsest uniformity for
which each of the projections X — X, is uniformly continuous; similarly,
if X is a uniform space and 4 < X, the induced uniformity is the coarsest
uniformity on A4 for which the canonical imbedding 4 — X is uniformly
continuous.

Let X be a uniform space. A filter § on X is a Cauchy filter if, for each
vicinity ¥, there exists Fe § such that F x F< V. If each Cauchy filter
converges (to an element of X) then X is called complete. To each uniform
space X one can construct a complete uniform space X such that X is
(uniformly) isomorphic with a dense subspace of X, and such that X is
separated if X is. If X is separated, then X is determined by these properties
to within isomorphism, and is called the completion of X. A base of the
vicinity filter of X can be obtained by taking the closures (in the topolog-
ical product X x X) of a base of vicinities of X. A Cauchy sequence in
X is a sequence whose section filter is a Cauchy filter; if every Cauchy
sequence in X converges, then X is said to be semi-complete (sequentially
complete).

If X is a complete uniform space and A a closed subspace, then the uniform
space A4 is complete; if X is a separated uniform space and 4 a complete
subspace, then 4 is closed in X. A product of uniform spaces is complete if
and only if each factor space is complete..

If Xis a uniform space, Y a complete separated space, X, = Xandf: X, — Y
uniformly continuous; then f has a unique uniformly continuous extension
fiX,-7Y.

7. Metric and Metrizable Spaces. If X is a set, a non-negative real function
don X x X is called a metric if the following axioms are satisfied:
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(1) d(x,y) = 0 is equivalent with x = y.

() d(x,y) = d(y, x).
(3) d(x,z) = d(x,y) + d(y,z) (triangle inequality).

Clearly, the sets W, = {(x, y):d(x, y) < n~1}, where n € N, form a filter base
on X x X defining a separated uniformity on X; by the metric space (X, d) we
understand the uniform space X endowed with the metric d. Thus all uniform
concepts apply to metric spaces. (It should be understood that, historically,
uniform spaces are the upshot of metric spaces.) A topological space is
metrizable if its topology can be derived from a metric in the manner indicated;
a uniform space is metrizable (i.e., its uniformity can be generated by a
metric) if and only if it is separated and its vicinity filter has a countable base.
Clearly, a metrizable uniform space is complete if it is semi-complete.

8. Compact and Precompact Spaces. Let X be a Hausdorff topological
space. X is called compact if every open cover of X has a finite subcover.
For X to be compact, each of the following conditions is necessary and
sufficient: (a) A family of closed subsets of X has non-empty intersection
whenever each finite subfamily has non-empty intersection. (b) Each filter
on X has a cluster point. (c) Each ultrafilter on X converges.

Every closed subspace of a compact space is compact. The topological pro-
duct of any family of compact spaces is compact (Tychonov’s theorem). If X
iscompact, Ya Hausdorff space, and f: X — ¥ continuous, then f(X) is a com-
pact subspace of Y. If fis a continuous bijection of a compact space X onto a
Hausdorffspace Y, then f is a homeomorphism (equivalently : If (X, T,) iscom-
pact and ¥, is a Hausdorff topology on X coarser than T;, then T, = T,).

There is the following important relationship between compactness and
uniformities: On every compact space X, there exists a unique uniformity
generating the topology of X; the vicinity filter of this uniformity is the
neighborhood filter of the diagonal A in the topological product X x-X. In
particular, every compact space is a complete uniform space. A separated
uniform space is called precompact if its completion is compact. (However,
note that a topological space can be precompact for several distinct uni-
formities yielding its topology.) X is precompact if and only if for each
vicinity W, there exists a finite subset X, = X such that X < J {W(x): x € X,}.
A subspace of a precompact space is precompact, and the product of any
family of precompact spaces is precompact.

A Hausdorff topological space is called locally compact if each of its points
possesses a compact neighborhood.

9. Category and Baire Spaces. Let X be a topological space, 4 a subset of
X. A is called nowhere dense (rare) in X if its closure A has empty interior;
A is called meager (of first category) in X if A4 is the union of a countable set
of rare subsets of X. A subset 4 which is not meager is called non-meager (of
second category) in X; if every non-empty open subset is nonmeager in X,
then X is called a Baire space. Every locally compact space and every complete
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metrizable space is a Baire space (Baire’s theorem). Each non-meager subset
of a topological space X is non-meager in itself, but a topological subspace
of X can be a Baire space while being a rare subset of X.

Literature: Berge [1]; Bourbaki [4], [5], [6]; Kelley [1]. A highly recom-
mendable introduction to topological and uniform spaces can be found in
Bushaw [1].

C. LINEAR ALGEBRA

1. Vector Spaces. Let L be a set, K a (not necessarily commutative) field.
Suppose there are defined a mapping (x, y) » x + y of L x L into L, called
addition, and a mapping (4, x) > Ax of K x L into L, called scalar multiplica-
tion, such that the following axioms are satisfied (x, y, z denoting arbitrary
elements of L, and A, p arbitrary elements of K):

MDD Ex+y)+z=x+y+2).

@ x+y=y+=x

(3) There exists an element O € L such that x + 0 = x for all x € L.
(4) For each x € L, there exists z € L such that x + z = 0.

(5) AMx + y)=Ax + Ay.

(6) (A + wx = Ax + px.

(7) Apx) = (Ap)x.

®) Ix=x.

Endowed with the structure so defined, L is called a left vector space over
K. The element O postulated by (3) is unique and called the zero element of L.
(We shall not distinguish notationally between the zero elements of L and
K.) Also, for any x € L the element z postulated by (4) is unique and denoted
by —x; moreover, one has —x = (—1)x, and it is customary to write x — y
for x + (—y).

If (1)~(4) hold as before but scalar multiplication is written (4, x) — xA and
(5)—(8) are changed accordingly, L is called a right vector space over K. By
a vector space over K, we shall always understand a left vector space over K.
Since there is no point in distinguishing between left and right vector spaces
over K when K is commutative, there will be no need to consider right vector
spaces except in C.4 below, and Chapter I, Section 4. (From Chapter II on,
K is always supposed to be the real field R or the complex field C.)

2. Linear Independence. Let L be a vector space over K. An element
Ayxy + -+ + A,x,,.where n € N, is called a linear combination of the elements

x;€L(i=1,...,n); as usual, this is written )  Axx; or Y Ax;. If {x,: « € H}
i=1

is a finite family, the sum of the elements x, is denoted by Y x,; for reasons
aeH
of convenience, this is extended to the empty set by defining ). x = 0. (This
xeQ
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should not be confused with the symbol 4 + B for subsets A, B of L, which
by A.2 has the meaning {x + y: x€ 4, ye B};thusif 4 = &, then4d + B=
for all subsets B = L.) A subset A = L is called linearly independent if for every
non-empty finite subset {x;: i = 1, ..., n} of 4, the relation ) ;4;x; = 0 implies
A;=0 for i =1, ..., n. Note that by this definition, the empty subset of L is
linearly independent. A linearly independent subset of L which is maximal
(with respect to set inclusion) is called a basis (Hamel basis) of L. The existence
of bases in L containing a given linearly independent subset is implied by
Zorn’s lemma; any two bases of L have the same cardinality ¢, which is called
the dimension of L (over K).

3. Subspaces and Quotients. Let L be a vector space over K. A vector
subspace (briefly, subspace) of L is a non-empty subset M of L invariant under
addition and scalar multiplication, that is, such that M + M < M and
KM = M. The set of all subspaces of L is clearly invariant under arbitrary
intersections. If 4 is a subset of L, the linear hull of A4 is the intersection M of
all subspaces of L that contain 4; M is also said to be the subspace of L
generated by 4. M can also be characterized as the set of all linear com-
binations of elements of A4 (including the sum over the empty subset of A).
In particular, the linear hull of ¥ is {0}.

If M is a subspace of L, the relation “x —ye M” is an equivalence
relation in L. The quotient set becomes a vector space over K by the definitions
R+P=x+y+ M, A8=ix+ M where X=x+ M, =y+ M, and is
denoted by L/M.

4. Linear Mappings. Let L,, L, be vector spaces over K. f:L; - L, is
called a linear map if f(A,x; + A,x,) = A, f(xy) + A,f(x,) for all 4,1, €K
and x,, x, € L,. Defining addition by (f; + f5)(x) = f1(x) + f>(x) and scalar
multiplication by (f4)(x) = f(Ax)(x € L,), theset L(L,, L,) of all linear maps
of L, into L, generates a right vector space over K. (If K is commutative, the
mapping x — f(Ax) will be denoted by Afand L(L,, L,) considered to be a left
vector space over K.) Defining (fA)(x) = f(x)4 if L, is the one-dimensional
vector space Ky(over K) associated with K, we obtain the algebraic dual L}
of L,. The elements of LY are called linear forms on L,.

L, and L, are said to be isomorphic if there exists a linear bijective map
f:L, - L,; such a map is called an isomorphism of L, onto L,. A linear
injective map f: L, — L, is called an isomorphism of L, into L,.

If f: L, —» L, is linear, the subspace N =7f"'(0) of L, is called the null
space (kernel) of /. f defines an isomorphism f; of L;/N onto M = f(L,); f,
is called the bijective map associated with f. If ¢ denotes the quotient map
L, - L,/N and ¥ denotes the canonical imbedding M — L,, thenf=y o f, o ¢
is called the canonical decomposition of f.

5. Vector Spaces over Valuated Fields. Let K be a field, and consider the
real field R under its usual absolute value. A function 1 — |4| of K into R,
(real numbers =0) is called an absolute value on X if it satisfies the following
axioms:
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(1) |A] = 0 is equivalent with A = 0.
(@ 12+ pl 1A+ |ul.
(3) 1Au] = [A][ul.

The function (4, p) » |4 — p| is a metric on K; endowed with this metric and
the corresponding uniformity, K is called a valuated field. The valuated field
K is called ‘non-discrete if its topology is not discrete (equivalently, if the
range of A — |4] is distinct from {0,1}). A non-discrete valuated field is neces-
sarily infinite.

Let L be a vector space over a non-discrete valuated field K, and let 4, B be
subsets of L. We say that 4 absorbs B if there exists 4y € K such that B < 14
whenever |A] = |Ao]. A subset U of L is called radial (absorbing) if U absorbs
every finite subset of L. A subset C of L is circled if AC = C whenever |4] < 1.

The set of radial subsets of L is invariant under finite intersections; the
set of circled subsets of L is invariant under arbitrary intersections. If A = L,
the circled hull of A is the intersection of all circled subsets of L containing A.
Let f: L, —» L, be linear, L, and L, being vector spaces over a non-discrete
valuated field K. If A = L, and B = L, are circled, then f(4) and f~(B) are
circled. If B is radial then f~'(B) is radial; if A4 is radial and f is surjective,
then f(A) is radial.

The fields R and C of real and complex numbers, respectively, are always
considered to be endowed with their usual absolute value, under which they
are non-discrete valuated fields. In addition, R is always considered under its
usual order.

Literature: Baer [1]; Birkhoff-MacLane [1]; Bourbaki [2], [3], [7].



Chapter I
TOPOLOGICAL VECTOR SPACES

This chapter presents the most basic results on topological vector spaces.
With the exception of the last section, the scalar field over which vector
spaces are defined can be an arbitrary, non-discrete valuated field K; K is
endowed with the uniformity derived from its absolute value. The purpose of
this generality is to clearly identify those properties of the commonly used
real and complex number field that are essential for these basic results.
Section 1 discusses the description of vector space topologies in terms of
neighborhood bases of 0, and the uniformity associated with such a topology.
Section 2 gives some means for constructing new topological vector spaces
from given ones. The standard tools used in working with spaces of finite
dimension are collected in Section 3, which is followed by a brief discussion
of affine subspaces and hyperplanes (Section 4). Section 5 studies the ex-
tremely important notion of boundedness. Metrizability is treated in Section
6. This notion, although not overly important for the general theory, deserves
special attention for several reasons; among them are its connection with
category, its role in applications in analysis, and its role in the history of the
subject (cf. Banach [1]). Restricting K to subfields of the complex numbers,
Section 7 discusses the transition from real to complex fields and vice versa.

1. VECTOR SPACE TOPOLOGIES

Given a vector space L over a (not necessarily commutative) non-discrete
valuated field K and a topology T on L, the pair (L,%) is called a topological
vector space (abbreviated t.v.s.) over K if these two axioms are satisfied:

(LT), (x,y)— x+ y is continuous on L x L into L.
(LT), (4, x)— Ax  is continuous on K x L into L.

Here L is endowed with ¥, K is endowed with the uniformity derived from
its absolute value, and L x L, K x L denote the respective topological

12
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products. Loosely speaking, these axioms require addition and scalar multi-
plication to be (jointly) continuous. Since, in particular, this implies the
continuity of (x, y) - x — y, every t.v.s. is a commutative topological group.
A twv.s. (L, T) will occasionally be denoted by L(T), or simply by L if the
topology of L does not require special notation.

Two t.v.s. L; and L, over the same field K are called isomorphic if there
exists a biunivocal linear map u of L, onto L, which is a homeomorphism;
u is called an isomorphism of L, onto L,. (Although mere algebraic isomor-
phisms will, in general, be designated as such, the terms ‘“topological iso-
morphism” and “topologically isomorphic” will occasionally be used to
avoid misunderstanding.) The following assertions are more or less immediate
consequences of the definition of a t.v.s.

11

Let L be a t.v.s. over K.

(i) For each x,€ L and each 2, € K, 1y # 0, the mapping x — AoXx + X is
a homeomorphism of L onto itself.

(ii) For any subset A of L and any base Wl of the neighborhood filter of 0 € L,
the closure A is given by A = {4 + U: Ue U}.

(iii) If A is an open subset of L, and B is any subset of L, then A + B is open.

(iv) If A, B are closed subsets of L such that every filter on A has an adherent
point (in particular, such that A is compact), then A + B is closed.

(v) If A is a circled subset of L, then its closure A is circled, and the interior
A of A is circled when 0 € A.

Proof. (i): Clearly, x - Aox + X, is onto L and, by (LT), and (LT),, con-
tinuous with continuous inverse x — Ay !(x — x,). Note that this assertion,
as well as (ii), (iii), and (v), requires only the separate continuity of addition
and scalar multiplication.

(ii): Let B=( {4 + U: Ue U}. By (i), {x — U: U e U} is a neighborhood
base of x for each x € L; hence x € B implies that each neighborhood of x
intersects 4, whence B = 4. Conversely, if xe A then xe 4 + U for each
0-neighborhood U, whence 4 < B.

(iii): Since A+ B=){4 + b:be B}, A+ B is a union of open subsets
of L if A is open, and hence an open subset of L.

(iv): We show that for each x, ¢ 4 + B there exists a 0-neighborhood U
such that (x, — U) n (4 + B) = & or, equivalently, that (B + U) n (x, — A)
= . If this were not true, then the intersections (B + U) N (x, — 4) would
form a filter base on xo — 4 (as U runs through a 0-neighborhood base in
L). By the assumption on A, this filter base would have an adherent point
Zg € Xo — A, also contained in the closure of B + U and hence in B+ U + U,
for all U. Since by (LT),, U + U runs through a neighborhood base of 0 as
U does, (ii) implies that z, € B, which is contsadictory.
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(v): Let A be circled and let [A| < 1. By (LT),, A4 = A implies 14 < 4;
hence 4 is circled. Also if A # 0, A4 is the interior of A4 by (i) and hence
contained in 4. The assumption 0 € 4 then shows that A4 = 4 whenever
Al < 1.

In the preceding proof we have repeatedly made use of the fact that in a
t.v.s., each translation x - x + x, is a homeomorphism (which is a special
case of (i)); a topology T on a vector space L is called translation-invariant
if all translations are homeomorphisms. Such a topology is completely
determined by the neighborhood filter of any point x € L, in particular by the
neighborhood filter of 0.

1.2

A topology T on a vector space L over K satisfies -the axioms (LT), and
(LT), if and only if T is translation-invariant and possesses a 0-neighborhood
base B with the following properties:

(a) For each V € B, there exists U € B such that U+ U c V.
(b) Every V € B is radial and circled.
(c) There exists A€ K, 0 < |A| < 1, such that V € B implies AV € B.

If K is an Archimedean valuated field, condition (c) is dispensable (which is,
in particular, the case if K= R or K = C).

Proof. We first prove the existence, in every t.v.s., of a 0-neighborhood base
having the listed properties. Given a 0-neighborhood W in L, there exists a
0-neighborhood U and a real number & > 0 such that AU =« W whenever
|A| £ &, by virtue of (LT),; hence since K is non-discrete, V =) {AU: ||
< ¢} is a 0-neighborhood which is contained in W, and obviously circled.
Thus the family B of all circled 0-neighborhoods in L is a base at 0. The
continuity at 1 = 0 of (4,x,) — Ax, for each x, € L implies that every Ve B
is radial. It is obvious from (LT), that ®B satisfies condition (a); for (c), it
suffices to observe that there exists 4 € K such that 0 <|4| < 1, since K is
non-discrete, and that AV (V € B), which is a 0-neighborhood by (1.1) (i), is
circled (note that if |u| < 1 then u = AvA~! where |v| < 1). Finally, the top-
ology of L is translation-invariant by (1.1) (i).

Conversely, let T be a translation-invariant topology on L possessing a
0-neighborhood base B with properties (a), (b), and (c). We have to show that
T satisfies (LT), and (LT),. It is clear that {x, + V: V' € B} is a neighborhood
base of x,e€L; hence if Ve B is given and Ue B is selected such that
U+ UcV,thenx —xo€ U, y— y,e Uimply that x + ye xo + yo + V; so
(LT), holds. To prove the continuity of the mapping (4, x) - Ax, that is
(LT),, let Ay, x, be any fixed elements of K, L respectively. If ¥ e B is given,
by (a) there exists U € B such that U + U < V. Since by (b) U is radial, there
exists a real number & > 0 such that (1 — Ag)x, € U whenever (1 — 1o S e.
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Let p e K satisfy (c); then there exists an integer n€ N such that |u~"| =
[ul™™ = |Ao| + &; let W e B be defined by W = pu"U. Now since U is circled,
the relations x — xo€ W and |A — 4o| < ¢ imply that A(x — x,) € U, and
hence the identity

Ax = doxo + (A — Ap)xo + Ax — xo)

implies that Ax € Agxo + U + U < dox, + V, which proves (LT),.

Finally, if K is an Archimedean valuated field, then |2| > 1 for 2 € K. Hence
|27 = |2|" > |Ao| + € (notation of the preceding paragraph) for a suitable
neN. By repeated application of (b), we can select a W; € B such that
"W, = W, + -+ W, < U, where the sum has 2" summands (2€N).
Since W, (and hence 2"W)) is circled, W, can be substituted for W in the
preceding proof of (LT),, and hence (c) is dispensable in this case. This
completes the proof of (1.2).

COROLLARY. If L is a vector space over K and B is a filter base in L having
the properties (a) through (c) of (1.2), then B is a neighborhood base of 0 for
a unique topology T such that (L, T) is a t.v.s. over K.

Proof. We define the topology T by specifying a subset G = L to be open
whenever x € G implies x + V = G for some ¥V e B. Clearly ¥ is the unique
translation-invariant topology on L for which B is a base at 0, and hence
the unique topology with this property and such that (L, ¥) is a t.v.s.

Examples

In the following examples, K can be any non-discrete valuated field; for
instance, the field of p-adic numbers, or the field of quaternions with their
usual absolute values, or any subfield of these such as the rational, real, or
complex number field (with the respective induced absolute value).

1. Let A be any non-empty set, KA the set of all mappings « — £, of A
into K; we write x = (£,), y = (1,) to denote elements x, y of KA. Defin-
ing additionby x + y = (¢, + n,)»and scalar multiplication by Ax = (1£,),
it is immediate that K becomes a vector space over K. For any finite
subset H<= A and any real number ¢ >0, let Vy, be the subset
{x:]&,] < ¢ if « € H} of K4; it is clear from (1.2) that the family of all
these sets Vy , is a O-neighborhood base for a unique topology under
which KA is a t.v.s.

2. Let X be any non-empty topological space; the set of all con-
tinuous functions f on X into K such that sup |f(¢)| is finite is a subset

teX

of K*, which is a vector space €x(X) under the operations of addition

and scalar multiplication induced by the vector space KX (Example 1);

the sets U, = {f: sup |f(#)] £n~!} (n € N) form a neighborhood base
teX

of O for a unique topology under which #x(X)is a t.v.s.
3. Let K[t] be the ring of polynomials f[t] = X ,,t" over K in one
indeterminate ¢. With multiplication restricted to left multiplication by
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polynomials of degree 0, K[t] becomes a vector space over K. Let r be
a fixed real number such that 0 <r <1 and denote by ¥V, the set of
polynomials for which Y ,|e,|" < €. The family {¥,: ¢ > 0} is a O-neigh-
borhood base for a unique topology under which K[¢] is a t.v.s.

1.3

If L is a tw.s. and xeL, each neighborhood of x contains a closed
neighborhood of x. In particular, the family of all closed 0-neighborhood forms
a base at 0.

Proof. For any O-neighborhood U there exists another, ¥, such that
V+ V< U. Since ye V only if (y — V) n V is non-empty, it follows that
Ve V+ V< U. Hence x + U contains the closed neighborhood x + ¥V of x.

Since by (1.2) any 0-neighborhood contains a circled 0-neighborhood, and
hence by (1.1) (v) and (1.3) a closed, circled 0-neighborhood, we obtain the
following corollary:

COROLLARY. If L is a t.v.s. and W is any neighborhood base of 0, then the
closed, circled hulls of the sets U € U form again a base at 0.

(1.3) shows that every Hausdorff t.v.s. is a regular topological space. It
will be seen from the next proposition that every t.v.s. is uniformisable, hence
every Hausdorff t.v.s. is completely regular. A uniformity on a vector space L
is called translation-invariant if it has a base ) such that (x, y) € N is equiva-
lent with (x +z,y +z) € N for each ze L and each Ne N.

14

The topology of any t.v.s. can be derived from a unique translation-invariant
uniformity W. If B is any neighborhood base of 0, the family Ny, = {(x, y):
x—yeV}, VeBis a base for N.

Proof. Let (L, T) be a t.v.s. with 0-neighborhood base B. It is immediate
that the sets Ny, ¥V € B form a filter base on L x L that is a base for a trans-
lation-invariant uniformity 3 yielding the topology ¥ of L. If R, is another
uniformity with these properties, there exists a base M of N,, consisting of
translation-invariant sets, and such that the sets

Uy={x—y:(x,p)eM} MeM

form a 0-neighborhood base for ¥. Since U, <V implies M = N, and
conversely, it follows that 9, =N.

The fact that there is a unique translation-invariant uniformity from which
the topology of a t.v.s. can be derived is of considerable importance in the
theory of such spaces (as it is for topological groups), since uniformity
concepts can be applied unambiguously to arbitrary subsets 4 of a t.v.s. L.
The uniformity meant is, without exception, that induced on 4 = L by the
uniformity 9 of (1.4). For example, a subset A of a t.v.s. L is complete if
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and only if every Cauchy filter in A converges to an element of 4; A4 is semi-
complete (or sequentially complete) if and onlyif every Cauchy sequencein A
converges to an element of A. It follows from (1.4) that a filter F i.u A is a
Cauchy filter if and only if for each 0-neighborhood ¥V in L, there exists F € §
such that F — F < V; accordingly, a sequence {x,: n€ N} in 4 is a Cauchy
sequence if and only if for each 0-neighborhood ¥V in L there exists n, € N
such that x,, — x, € V whenever m = n, and n = n,,.

A t.v.s. L is a Hausdorff (or separated) topological space if and only if L
is a separated uniform space; hence by (1.4), L is separated if and only if
N {U: U e U} = {0}, where U is any neighborhood base of 0 in L. An equiva-
lent condition is that for each non-zero x € L, there exists a 0-neighborhood
U such that x ¢ U (which is also immediate from (1.3)).

Recall that a subspace (vector subspace, linear subspace) of a vector space
L over K is defined to be a subset M # (J of L such that M + M = M and
KM < M. If L is a t.v.s., by a subspace of L we shall understand (unless the
contrary is expressly stated) a vector subspace M endowed with the topology
induced by L; clearly, M is a t.v.s. which is separated if L is.

If L is a Hausdorff t.v.s., the presence of a translation-invariant separated
uniformity makes it possible to imbed L as a dense subspace of a complete
Hausdorff t.v.s. L which is essentially unique, and is called the completion
of L. (See also Exercise 2.)

1.5

Let L be a Hausdorff t.v.s. over K. There exists a complete Hausdorff t.v.s.
L over K containing L as a dense subspace; L is unique to within isomorphism.
Moreover, for any 0-neighborhood base B in L, the family M = {V. V € B} of
closures in L is a 0-neighborhood base in L.

Proof. We assume it known (cf. Bourbaki [4], chap. II) that there exists a
separated, complete uniform space L which contains L as a dense subspace,
and which is unique up to a uniform isomorphism. By (1.4) (x, y) = x + y is
uniformly continuous on L x L into L, and for each fixed 1 e K (4, x) > Ax
is uniformly continuous on L into L; hence these mappings have unique
continuous (in fact, uniformly continuous) extensions to I x L and L,
respectively, with values in L. It is quickly verified (continuation of identities)
that these extensions make L into a vector space over K. Before showing that
the uniform space L is a t.v.s. over K, we prove the second assertion. Since
{Ny: V€ B} is a base of the uniformity R of L (notation as in (1.4)), the
closures Ny, of these sets in L x L form a base of the uniformity 9t of L; we
assert that Ny = N, for all Ve B. But if (i 7)€ Ny, then X — j € V, since
(%, §) = % — 7 is continuous on L x L into L. Conversely, if X — j € V, then
we have X € j + V; hence % is in the closure (taken in L) of § + V, since
translations in Zare homeomorphisms; this implies that (%, 7) € Ny.
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It follows that 9B is a neighborhood base of 0 in I; we use (1.2) to show that

under the topology T defined by 51, L is a t.v.s. Clearly, T is translation-
invariant and satisfies conditions (a) and (c) of (1.2); hence it suffices to
show that each Ve B contains a Z-neighborhood of 0 that is radial and
circled. Given ¥ € B, there exists a circled 0-neighborhood U in L such that
U+ Uc V. The closure (U+ U)~ in L is a 0-neighborhood by the pre-
ceding, is circled and clearly contained in V. Let us show that it is radial.
Given % € L, there exists a Cauchy filter § in L convergent to X, and an Fe §
such that F— F< U. Let x, be any element of F; since U is radial there
exists A € K such that x, € AU, and since U is circled we can assume that
[A]=1. Now F—xocU; hence Fcxo+ U and feFc AU+ U)",
which proves the assertion.

Finally, the uniqueness of (Z, i) (to within isomorphism) follows, by

virtue of (1.4), from the uniqueness of the completion L of the uniform
space L.

REMARK. The completeness of the valuated field X is not required for
the preceding construction. On the other hand, if L is a complete
Hausdorff t.v.s. over K, it is not difficult to see that scalar multiplication
has a unique continuous extension to K x L, where K is the completion
of K. Thus it follows from (1.5) that for every Hausdorff t.v.s. over X
there exists a (essentially unique) complete Hausdorff t.v.s. L; over K
such that the topological group L is isomorphic with a dense subgroup
of the topological group L,.

We conclude this section with a completeness criterion for a t.v.s. (L, ;)
in terms of a coarser topology ¥, on L.

1.6

Let L be a vector space over K and let T,, T, be Hausdorff topologies under
each of which L is a t.v.s., and such that X, is finer than X,. If (L, T,) has a

neighborhood base of 0 consisting of sets complete in (L, X,), then (L, X,) is
complete.

Proof. Let B, be a I,;-neighborhood base of 0 in L consisting of sets
complete in (L, ¥,). Given a Cauchy filter § in (L, T,) and V; € B,, there
exists a set Fy € § such that F, — F, = V,. If y isany fixed element of F,,
the family {y — F: F e §} is a Cauchy filter base for the uniformity associated
with ¥,, for which V; is complete; since y — F, = V,, this filter base has a
unique T,-limit y — x,. It is now clear that x, € L is the T,-limit of §. Since
V; is T,-closed, we have F, — xo = V, or F, = xo, + V,; V; being arbitrary,
this shows & to be finer than the T,-neighborhood filter of x, and thus
proves (L, T,) to be complete.

For the reader familiar with- normed spaces, we point out this example
for (1.6): Every reflexive normed space is complete and hence is a Banach
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space. For in such a space the positive multiples of the closed unit ball,
which form a O-neighborhood base for the norm topology, are weakly
compact and hence weakly complete.

2. PRODUCT SPACES, SUBSPACES, DIRECT SUMS, QUOTIENT SPACES

Let {L,: « € A} denote a family of vector spaces over the same scalar field
K; the Cartesian product L = [[,L, is a vector space over K if for x = (x,),
y=(,)eL and Ae K, addition and scalar multiplication are defined by
x+y=(x,+ o), Ax = (Ax,). If (L,, T,) (2 € A) are t.v.s. over K, then Lis a
t.v.s. under the product topology T =[[,T,; the simple verification of
(LT), and (LT), is left to the reader. Moreover, it is known from general
topology that L(¥) is a Hausdorff space and a complete uniform space,
respectively, if and only if each factor is. (L, T) will be called the product of
the family {L(T,): a € A}.

As has been pointed out before, by a subspace M of a vector space L over
K we understand a subset M # & invariant under addition and scalar
multiplication; we record the following simple consequence of the axioms
(LT), and (LT),:
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If(L, X) is a t.v.s. and M is a subspace of L, the closure M in (L, ¥) is again
a subspace of L.

Proof. In fact, it follows from (LT), that M + M = M, and from (LT),
that KM < M.

We recall the following facts from linear algebra. If L is a vector space,
M; (i=1, ..., n) subspaces of L whose linear hull is L and such that M;n
(Y., M;)={0} for each i, then L is called the algebraic direct sum of the

J#Fi

subspaces L; (i = 1, ..., n). It follows that each x € L has a unique represen-
tation x = ) ;x;, where x;€L;, and the mapping (x,, ..., X,) = ) ;x; is an
algebraic isomorphism of [ [;,L; onto L. The mapping u;: x — x; is called the
projection of L onto L; associated with this decomposition. If each u; is
viewed as an endomorphism of L, one has the relations wu; = 6,u; (i, j =
1,...,n) and Y u; = e, e denoting the identity map.

If (L, ¥) is a t.v.s. and L is algebraically decomposed as above, each of the
projections u; is an open map of L onto the t.v.s. M;. In fact, if G is an open
subset of L and N; denotes the null space of u;, then G + N; is open in L by
(1.1) and u(G) =u(G + N;) =(G + N)n M;. From (LT), it is also clear
that the mapping ¥: (xy, ..., x,) = Y ;x; of [ [;M; onto L is continuous; if ¥
is an isomorphism, L is called the direct sum (or topological direct sum if
this distinction is desirable) of the subspaces M (i=1, ...,n); we write
L=M,®---®M,.
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Let a tv.s. L be the algebraic direct sum of n subspaces M; (i =1, ..., n).
Then L=M,® --- ®@ M, if and only if the associated projections u; are con-
tinuous (i=1, ..., n).

Proof. By definition of the product topology, the mapping ¥~ ': x —
(uyx, ..., u,x) of L onto [[;M; is continuous if and only if each u; is.

REMARK. Since the identity map e is continuous on L, the continuity
of n — 1 of these projections implies the continuity of the remaining
one.

A subspace N of a t.v.s. L such that L = M @ N is called a subspace
complementary (or supplementary) to M ; such complementary subspaces
do not necessarily exist, even if M is of finite dimension (Exercise 8);
cf. also Chapter IV, Exercise 12.

Let (L, ) be a t.v.s. over K, let M be a subspace of L, and let ¢ be the
natural (canonical, quotient) map of L onto L/M—that is, the mapping which
orders to each x € L its equivalence class £ = x + M. The quotient topology
€ is defined to be the finest topology on L/M for which ¢ is continuous.
Thus the open sets in L/M are the sets ¢(H) such that H + M is open in L;
since G + M is open in L whenever G is, ¢(G) is open in L/M for every
open G = L; hence ¢ is an open map. It follows that ¢(B) is a 0-neighborhood
base in L/M for every 0-neighborhood base B in L; since ¢ is linear, T is
translation-invariant and ¢(B) satisfies conditions (a), (b), and (c) of (1.2) if
these are satisfied by 8. Hence (L/ M, f) is a t.v.s. over K, called the quotient
space of (L, ¥) over M.
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If L is a t.s. and if M is a subspace of L, then L|M is a Hausdorff space
if and only if M is closed in L.

Proof. If L/M is HausdorfT, the set {0} = L/M is closed; by the continuity
of ¢, M = ¢ 1(0) is closed. Conversely, if £ # 0 in L/M, then £ = ¢(x),
where x ¢ M ; if M is closed, the complement U of M in L is a neighborhood of
x; hence ¢(U) is a neighborhood of £ not containing 0. Since ¢(U) contains a
closed neighborhood of £ by (1.3), L/M is a Hausdorff space.

By (2.3), a Hausdorff t.v.s. L/M can be associated with every t.v.s. L by
taking for M the closure in L of the subspace {0}; M is a subspace by (2.1).
This space L/M is called the Hausdorff t.v.s. associated with L.

There is the following noteworthy relation between quotients and direct
sums :
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Let L be a t.v.s. and let L be the algebraic direct sum of the subspaces M, N.
Then L is the topological direct sum of M and N: L = M @ N, if and only if the
mapping v which orders to each equivalence class mod M its unique representa-
tive in N is an isomorphism of the t.v.s. L|M onto the t.v.s. N.

Proof. Denote by u the projection of L onto N vanishing on M, and by ¢
the natural map of L onto L/M. Then u =vo ¢. Let L= M @ N. Since ¢ is
open and u is continuous, v is continuous; since ¢ is continuous and u is
open, v is open. Conversely, if v is an isomorphism then v is continuous;
hence u is continuous which implies L = M @ N.

3. TOPOLOGICAL VECTOR SPACES OF FINITE DIMENSION

By the dimension of a t.v.s. L over K, we understand the algebraic dimension
of L over K, that is, the cardinality of any maximal linearly independent sub-
set of L; such a set is called a basis (or Hamel basis) of L. Let K, denote the
one-dimensional t.v.s. obtained by considering K as a vector space over itself.

3.1

Every one-dimensional Hausdorff t.v.s. L over K is isomorphic with K,;
more precisely, A — Ax, is an isomorphism of K, onto L for each xy €L,
Xo # 0, and every isomorphism of K, onto L is of this form.

Proof. Tt follows from (LT), that A — Ax, is continuous; moreover, this
mapping is an algebraic isomorphism of K, onto L. To see that Ax, — 4 is
continuous, it is sufficient to show the continuity of this map at 0 e L. Let
¢ < 1 be a positive real number. Since K is non-discrete, there exists 1, € K
such that 0 < [44| < ¢, and since L is assumed to be Hausdorff, there exists a
circled 0-neighborhood ¥ < L such that Ayx, ¢ V. Hence Ax, € V' implies
[A| < ¢; for [A| = & would imply A¢x, € V, since V is circled, which is contra-
dictory.

Finally, if » is an isomorphism of K, onto L such that u(1) = x,, then u is
clearly of the form A — Ax,.
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Theorem. Every Hausdorff t.v.s. L of finite dimension n over a complete
valuated field K is isomorphic with Kg. More precisely, (4, ..., 4,) = A1x; +
oo + Ax, Is an isomorphism of K§ onto L for each basis {x,, ..., x,} of L, and
every isomorphism of Kg onto L is of this form.

Proof. The proof is conducted by induction. (3.1) implies the assertion to
be valid for n = 1. Assume it to be correct for k =n — 1. If {x,, ..., x,} is
any basis of L, L is the algebraic direct sum of the subspaces M and N with
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bases {x,, ..., x,—1} and {x,}, respectively. By assumption, M is isomorphic
with K§~!; since K|, is complete, M is complete and since L is Hausdorff,
M is closed in L. By (2.3), L/M is Hausdorff and clearly of dimension 1;
hence the map v, ordering to each equivalence class mod M its unique
representative in N, is an isomorphism by (3.1). It follows from (2.4) that
L=M®N, which means that (4,,...,4,) > 4;x; + --- + 4,x, is an iso-
morphism of K3~ x K, = K& onto L. Finally, it is obvious that every
isomorphism of K§ onto L is of this form.

It is worth remarking that while (3.1) (and a fortiori (3.2)) obviously fails
for non-Hausdorff spaces L, (3.2) may fail for » > 1 when K is not complete
(Exercise 4).

Theorem (3.2) can be restated by saying that if K is a complete valuated
field, then the product topology on K¢ is the only Hausdorff topology satis-
fying (LT), and (LT), (Tychonoff [1]). This has a number of important
consequences.
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Let L be a t.v.s. over K and let K be complete. If M is a closed subspace of L
and N is a finite dimensional subspace of L, then M + N is closed in L.

Proof. Let ¢ denote the natural map of L onto L/M; L/M is Hausdorff by
(2.3). Since ¢(N) is a finite-dimensional subspace of L/M, it is complete by
(3.2), hence closed in L/M. This implies that M + N = ¢~ '(¢(N)) is closed,
since ¢ is continuous.

3.4

Let K be complete, let N be a finite dimensional Hausdorff t.v.s. over K, and
let L be any t.v.s. over K. Every linear map of N into L is continuous.

Proof. The result is trivial if N has dimension 0. If N has positive dimension
n, it is isomorphic with K§ by (3.2). But every linear map on Kj into L is
necessarily of the form (4,,...,4,) = A4, y; + -+ + 4,y,, Where y;eL, and
hence continuous by (LT), and (LT),.

We recall that the codimension of a subspace M of a vector space L is the
dimension of L/M; N is an algebraic complementary subspace of M if
L= M + N is an algebraic direct sum.

35

Let L be a t.v.s. over the complete field K and let M be a closed subspace of
finite codimension. Then L =M @ N for every algebraic complementary
subspace N of M.

Proof. L/M is a finite dimensional t.v.s., which is Hausdorff by (2.3);
hence by (3.4), the mapping v of L/M onto N, which orders to each element
of L/M its unique representative in N, is continuous. By (2.2), this implies
L =M@ N, since the projection ¥ = v o ¢ is continuous.
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ReMARK. It follows from (2.4) that in the circumstances of (3.5), N
is necessarily a Hausdorff subspace of L. It is not difficult to verify this

directly.

We now turn to the second important theorem concerning t.v.s. of finite
dimension. Itis clear from (3.2) that if K is locally compact (hence complete),
then every finite dimensional Hausdorff t.v.s. over K is locally compact.
Conversely, if K is complete, then every locally compact Hausdorff t.v.s.
over K is of finite dimension (cf. Exercise 3).

3.6

Theorem. Let K be complete. If L # {0} is a locally compact Hausdorff
t.v.s. over K, then K is locally compact and L is of finite dimension.

Proof. By (3.1) every one-dimensional subspace of L is complete, hence
closed in L and therefore locally compact; it follows that K is locally com-
pact. Now let ¥ be a compact, circled O-neighborhood in L, and let {1,} be a
null sequence in K consisting of non-zero terms. We show first that {1,V: n € N}
is a neighborhood base of 0 in L. Given a 0-neighborhood U, choose a circled
0-neighborhood W such that W+ W< U. Since V is compact, there exist

elements x;e V (i=1, ..., k) satisfying V < U (x; + W), and there exists

Ae K, 2% 0, such that Ax; e W for all i, and ]/1] < 1. There exists ne N for
which |4,| £ 4], and

k
MWceclVe UUx;+ AW)ye W+ WU
i=1

shows {1,V: ne N} to be a neighborhood base of 0.
Let p € K satisfy 0 < |p| < 1/2. Since ¥ is compact and pV is a 0-neighbor-

hood, there exist elements y, (/ =1, ..., m) in ¥ for which V' = (J (y, + pV).
=1

We denote by M the smallest subspace of L containing all y, (/I =1, ..., m)
and show that M = L, which will complete the proof. Assuming that M # L,
there exists we L ~ M and ny € N such that (w + 4, V) n M = ; for M,
which is finite dimensional and hence complete by (3.2), is closed in L while
{w+ A,V:ne N} is a neighborhood base of w. Let u be any number in K
such that w + uV intersects M (such numbers exist since V is radial) and
set & = inf|y|. Clearly, 6 = |4,,| > 0. Choose v, € V' so that y = w + uyv, € M,
where & < |po| < 36/2. By the definition of {y,} there exists p, 1 < I, < m,
such that vy = y, + pv,, where v, € V, and therefore

w =y — poo = (¥ — Hoyi,) = KopV1 € M + popV.

This contradicts the definition of J, since ¥ is circled and since |uop| < 36/4;
hence the assumption M # L is absurd.
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4. LINEAR MANIFOLDS AND HYPERPLANES

If L is a vector space, a linear manifold (or affine subspace) in L is a subset
which is a translate of a subspace M < L, that is, a set F of the form x, + M
for some x,€L. F determines M uniquely while it determines x, only
mod M: xo + M = x,; + Nif and only if M = N and x, — x, € M. Two linear
manifolds xo, + M and x; + N are said to be parallel if either M < N or
N < M. The dimension of a linear manifold is the dimension of the subspace
of which it is a translate. A hyperplane in L is a maximal proper affine sub-
space of L; hence the corresponding subspace of a hyperplane is of codimen-
sion 1. It is further clear that two hyperplanes in L are parallel if and only if the
corresponding subspaces are identical. A hyperplane which is a subspace (i.e.,
a hyperplane containing 0) is sometimes called a. homogeneous hyperplane.

For any vector space L over K, we denote by L* the algebraic dual of L,
that is, the (right) vector space (over K) of all linear forms on L.

4.1

A subset H < L is a hyperplane if and only if H = {x: f(x) = a} for some
o € K and some non-zero fe L*. f and o are determined by H to within a
common factor B,0 # B e K.

Proof. If fe L* is #0, then M = f~1(0) is a maximal proper subspace of
L; if, moreover, x, € L is such that f(x,) =, then H = {x: f(x) =a} =
Xxo + M, which shows H to be a hyperplane. Conversely, if H is a hyperplane,
then H = x, + M, where M is a subspace of L such that dim L/M =1, so
that L/ M is algebraically isomorphic with K. Denote by ¢ the natural map of
L onto L/M and by g an isomorphism of L/M onto K,; then f=go ¢ is a
linear form #0 on L such that H = {x: f(x) = o} when o = f(x,). If H =
{x: fi(x) = a,} is another representation of H, then because of f; }(0) = M
we must have f; =g, o ¢, where g, is an isomorphism of L/M onto Kj; if
¢ is the element of L/ M for which g(&) = 1 and if g,(&) = B, then f,(x) = f(x)B
for all x € L, thus completing the proof.

Since translations in a t.v.s. L are homeomorphisms, it follows from (2.1)
that the closure of an affine subspace F is an affine subspace F; but F need
not be a proper subset of L if Fis.
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A hyperplane H in a t.v.s. L is either closed or dense in L; H = {x: f(x) = o}
is closed if and only if f is continuous.

Proof. If a hyperplane H < L is not closed, it must be dense in L; otherwise,
its closure would be a proper affine subspace of L, contradicting the maxi-
mality of H. To prove the second assertion, it is sufficient to show that
f710) is closed if and only if f is continuous. If f is continuous, £ ~*(0) is
closed, since {0} is closed in K. If £~1(0) is closed in L, then L/f~%(0) is a
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HausdorfT t.v.s. by (2.3), of dimension 1; writing f = g o ¢ as in the preceding
proof, (3.1) implies that g, hence f; is continuous.

We point out that, in general, there exist no closed hyperplanes in a t.v.s.
L, even if it is Hausdorff (Exercises 6, 7).

5. BOUNDED SETS

A subset A of a t.v.s. L is called bounded if for each 0-neighborhood U
in L, there exists A € K such that 4 = AU. Since by (1.2) the circled 0-neighbor-
hoods in L form a base at 0, 4 = L is bounded if and only if each 0-
neighborhood absorbs 4. A fundamental system (or fundamental family) of
bounded sets of L is a familyB of bounded sets such that every bounded sub-
set of L is contained in a suitable member of B.

A subset B of a t.v.s. L is called totally bounded if for each 0-neighborhood
U in L there exists a finite subset B, = B such that B = B, + U. Recall that a
separated uniform space P is called precompact if the completion P of P is
compact; it follows readily from (1.4) and a well-known characterization of
precompact uniform spaces (see Prerequisites) that a subset B of a Hausdorff
t.v.s. is precompact if and only if it is totally bounded. (We shall use the term
precompact exclusively when dealing with Hausdorff spaces.) From the
preceding we obtain an alternative characterization of precompact sets:
A subset B of a Hausdorff t.v.s. L is precompactif and only if the closure of
B in the completion L of L is compact.
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Let L be a t.v.s. over K and let A, B be bounded (respectively, totally bounded)
subsets of L. Then the following are bounded (respectively, totally bounded) sub-
sets of L:

(i) Every subset of A.
(ii) The closure A of A.

(iii) A U B, A + B, and AA for each A € K.

Moreover, every totally bounded set is bounded. The circled hull of a bounded
set is bounded; if K is locally precompact, the circled hull of every totally
bounded set in L is totally bounded.

Proof. If A, B are bounded subsets of L, then (i) is trivial and (ii) is clear
from (1.3). To prove (iii), let 4, and A, be two elements of K such that
A < 2,U and B < 4,U for a given circled 0-neighborhood U. Since X is non-
discrete, there exists Ao € K such that |do| > sup(|4,],|4,]). We obtain
AU Bc AUand 4 + B < Ay(U + U); since by (1.2) U + U runs through a
neighborhood base of 0 when U does, it follows that AU B and 4 + B are
bounded; the boundedness of A4 is trivial. The proof for totally bounded
sets A, B is similarly straightforward and will be omitted.

Since ¢ and every one-point set are clearly bounded, it follows from a
repeated application of (iii) that every finite set is bounded. If B is totally
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bounded and U is a given circled 0-neighborhood, there exists a finite set
B, = B such that B< B, + U. Now B, = 1,U, where we can assume that
[40] = 1, since U is circled; we obtain B = 1o(U + U) and conclude as before
that B is bounded. The fact that the circled hull of a bounded set is bounded
is clear from (1.3). To prove the final assertion, it is evidently sufficient to
show that the circled hull of a finite subset of L is totally bounded, provided
that K is locally precompact. In view of (iii), it is hence sufficient to observe
that each set Sa is totally bounded where ae L and S = {A: [A| £ 1}; but
this is clear from (LT), and the assumed precompactness of S (cf. (5.4)
below). This completes the proof.

COROLLARY 1. The properties of being bounded and of being totally bounded
are preserved under the formation of finite sums and unions and under dila-
tations x = AoX + Xo.

COROLLARY 2. The range of every Cauchy sequence is bounded.

COROLLARY 3. The family of all closed and circled bounded subsets of a t.v.s.
L is a fundamental system of bounded sets of L.

It is clear from the definition of precompactness that a subset of a Haus-
dorff t.v.s. is compact if and only if it is precompact and complete. We record
the following simple facts on compact sets.
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Let L be a Hausdorff t.v.s. over K and let A, B be compact subsets of L.
Then A B, A + B, and 1A (A € K) are compact, if K is locally compact, then
also the circled hull of A is compact.

Proof. The compactness of 4 U B is immediate from the defining property
of compact spaces (each open cover has a finite subcover; cf. Prerequisites);
A + B is compact as the image of the compact space 4 x B under (x, y) —
x + y which is continuous by (LT),; the same argument applies to A4 by
(LT),. (Another proof consists in observing that 4 U B, A + B, and 14 are
precompact and complete.) Finally, the circled hull of A4 is the continuous
image of S x A4 (under (4, x) - Ax), and hence compact if .S is compact.

COROLLARY. Compactness of subsets of a Hausdorff t.v.s. is preserved under
the formation of finite sums and unions and under dilatations.

The following is a sequential criterion for the boundedness of a subset of a
t.v.s. (for a sequential criterion of total boundedness, see Exercise 5). By a
null sequence in a t.v.s. L, we understand a sequence converging to 0 € L.

5.3

A subset A of a t.v.s. L is bounded if and only if for every null sequence {A,}
in K and every sequence {x,} in A, {A,x,} is a null sequence in L.
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Proof. Let A be bounded and let ¥ be a given circled 0-neighborhood in L.
There exists u € K, u # 0 such that ud = V. If {4,} is any null sequence in X,
there exists ny, € N such that [1,| < |u| whenever n = ny; hence we obtain
AnX, € V for all n 2 ny and any sequence {x,} in 4. Conversely, suppose that
A is a subset of L satisfying the condition; if 4 were not bounded, there would
exist a O-neighborhood U such that A is not contained in p,U for any se-
quence {p,} in K. Since K is non-discrete, we can choose p, so that |p,| =2 n
for all ne N, and x,€ A ~ p,U (ne N); it would follow that p, 'x, ¢ U for
all n, which is contradictory, since {p,; !} is a null sequence in K.

5.4

Let L, M be t.v.s. over K and let u be a continuous linear map of L into M
If B is a bounded (respectively, totally bounded) subset of L, u(B) is bounded
(respectively, totally bounded) in M.

Proof. If V is any 0-neighborhood in M, then u~ (V) is a 0-neighborhood
in L; hence if B is bounded, then B = Au~!(¥) for a suitable A € K, which
implies u(B) = AV. If B is totally bounded, then B = B, + u~ (V) for some
finite set B, = B, whence u(B) < u(B,) + V.

The preceding result will enable us to determine the bounded sets in a
product space [ [,L,. We omit the corresponding result for totally bounded sets.

5.5

If{L, o € A} is a family of t.v.s. and if L =[|,L,, a subset B of L is bounded
if and only if B <[ |,B,, where each B, (« € A) is bounded in L,.

Proof. 1t is easy to verify from the definition of the product topology that
if B, is bounded in L, (x € A), then [[,B, is bounded in L; on the other
hand, if B is bounded in L, then u,(B) is bounded in L,, since the projection
map u, of L onto L, is continuous (« € A), and, clearly, B = [ .4, (B).

Thus a fundamental system of bounded sets in [ [, L, is obtained by forming
all products [ [,B,, where B, is any member of a fundamental system of
bounded sets in L,(« € A). Further, if L is a t.v.s. and M a subspace of L, a set
is bounded in M if and only if it is bounded as a subset of L; on the other
hand, a bounded subset of L/M is not necessarily the canonical image of a
bounded set in L (Chapter IV, Exercises 9, 20).

A t.v.s. L is quasi-complete if every bounded, closed subset of L is complete;
this notion is of considerable importance for non-metrizable t.v.s. By (5.1),
Corollary 2, every quasi-complete t.v.s. is semi-complete; many results on
quasi-complete t.v.s. are valid in the presence of semi-completeness, although
there are some noteworthy exceptions (Chapter IV, Exercise 21). Note also
that in a quasi-complete Hausdorff t.v.s., every precompact subset is rela-
tively compact.

5.6

The product of any number of quasi-complete t.v.s. is quasi-complete.
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The proof is immediate from the fact that the product of any number of
complete uniform spaces is complete, and from (5.5).

6. METRIZABILITY

A t.vs. (L, T) is metrizable if its topology T is metrizable, that is, if there
exists a metric on L whose open balls form a base for T. We point out that
the uniformity generated by such a metric need not be translation-invariant
and can hence be distinct from the uniformity associated with T by (1.4)
(Exercise 13). However, as we have agreed earlier, any uniformity notions to
be employed in connection with any t.v.s. (metrizable or not) refer to the
uniformity R of (1.4).

It is known from the theory of uniform spaces that a separated uniform
space is metrizable if and only if its vicinity filter has a countable base. For
topological vector spaces, the following more detailed result is available.

6.1

Theorem. A Hausdorff t.v.s. L is metrizable if and only if it possesses a
countable neighborhood base of 0. In this case, there exists a function x — |x|
on L into R such that:

@) |A| = 1 implies |Ax| < |x]| for all x € L.

@) [x+y| = |x| +|y| forallxeL, yeL.

(iii) |x| = 0 is equivalent with x = 0.

(iv) The metric (x, y) = |x — y| generates the topology of L.

We note that (i) implies x| = | —x| and that (i) and (iii) imply |x| = O for
all x € L. Moreover, since the metric (x, y) - |[x —y| is translation-invariant,
it generates also the uniformity of the t.v.s. L.

A real function x — |x|, defined on a vector space L over K and satisfying
(i) through (iii) above, is called a pseudo-norm on L. It is clear that a given
pseudo-norm on L defines, via the metric (x, y) - |x — y|, a topology T on L
satisfying (LT), ; on the other hand, (LT), is not necessarily satisfied (Exercise
12). However, if x — |x| is a pseudo-norm on L such that i, — 0 implies
|A,x| = O for each x € L and |x,| —» 0 implies |Ax,| =0 for each A€ K, then
it follows from (i) and the identity

Ax — j.ox‘) = lo(x e xO) + (l - lo)Xo + (}. - lo)(x - xO)

that the topology ¥ defined by x — |x| satisfies (LT),, and hence that (L, T)

is a t.v.s. over K.
Proof of (6.1). Let {V,-ne N} be a base of circled 0-neighborhoods

satisfying

Visr + Vasr =V (neN). 1)
For each non-empty finite subset H of N, define the circled 0-neighborhood
Vi by Via =Y ,en Vs and the real number py by py =Y ,.x27" It follows
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from (1) by induction on the number of elements of H that these implications
hold:
u<2"=n<H=VgycV, )

where n < H means that » < k for all k€ H. We define the real-valued
function x — |x| on L by |x| = 1 if x is not contained in any ¥y, and by

|x] = inf {py: x € Vy}
H

otherwise; the range of this function is contained in the real unit interval.
Since each V5 is circled, (i) is satisfied. Let us show next that the triangle
inequality (ii) is valid. This is evident for each pair (x, y) such that x| + |y| = 1.
Hence suppose that |x| + [y| < 1. Let ¢ >0 be any real number such that
|x| + |y] + 2¢ < 1; there exist non-empty finite subsets H, K of N such that
xeVy, yeVx and py<|x|+¢& pg<|y|+e Since py+ pg <1, there
exists a unique finite subset M of N for which py = py + pk; by virtue of (1),
M has the property that Vy; + Vx < V). It follows that x + y € V), and hence
that
[x + y| < pv = pu + Px < [xX] + [y] + 2¢,

which proves (ii).
For any ¢ > 0, let S, = {x € L: |x| < ¢}; we assert that

Sy-n-1e ¥V, 8S,-n (n e N). 3)

The inclusion V, = S,-. is obvious since x € ¥, implies [x| < 27" On the
other hand, if |x| £ 27", then there exists H such that x € ¥}, and py < 27";
hence (2) implies that x € V.

It is clear from (3) that (iii) holds, since L is a Hausdorff space and hence
x =0 is equivalent with x e (\{V,: ne N}. Moreover, (3) shows that the
family {S,: ¢ >0} is a neighborhood base of 0 in L; since the topology
generated by the metric (x, y) — |x — y| is translation-invariant, (iv) also
holds. This completes the proof.

REMARK. It is clear from the preceding proof that on every non-
Hausdorff t.v.s. L over K possessing a countable neighborhood base of
0, there exists a real-valued function having properties (i), (ii) and (iv) of

(6.1).

If L is a metrizable t.v.s. over K and if x —|x| is a pseudo-norm generating
the topology of L, this pseudo-norm is clearly uniformly continuous; hence
it has a unique continuous extension, ¥ — |%|, to the completion L of L. We
conclude from (1.5) that this extension, which is obviously a pseudo-norm
on L, generates the topology of L.

Example. Denote by I the real unit interval and by u Lebesgue
measure on /. Further let £? (p > 0) be the vector space over R of all
real-valued, u-measurable functions for which | £|? (where | /| denotes the
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function ¢ — | f(#)|) is p-integrable, and let L? be the quotient space of
Z? over the subspace of u-null functions. If p £ 1,

f—*jlfl"du
I

is a pseudo-norm on L?, and it is easy to verify that L? is complete under
the corresponding topology. If p < 1, L? is an example of a Hausdorff
t.v.s. on which there exists no continuous linear form other than 0
(Exercise 6).

A t.v.s. Lis said to be locally bounded if L possesses a bounded neighbor-
hood of 0; clearly, such a space has a neighborhood base of 0 consisting of
bounded sets. The spaces L? of the preceding paragraph are locally bounded.
We shall encounter further examples in Chapter II, Section 2.

6.2

Every locally bounded Hausdorff t.v.s. is metrizable.

Proof. Let V be a bounded 0-neighborhood in L and let {4,} be a sequence
of non-zero elements of K such that lim 4, = 0. If U is any circled neighbor-
hood of 0, there exists A € K such that V < AU, since V is bounded; if # is
such that [4,4| £ 1, then A,V < U, since U is circled. It follows that {4,V:
n € N} is a 0-neighborhood base, whence L is metrizable by (6.1).

A quasi-complete, locally bounded t.v.s is complete, since it possesses a
complete neighborhood of 0. We observe that the converse of (6.2) is false;
an example is furnished by the product of a countably infinite number of
one-dimensional t.v.s. which is metrizable (see below), but not locally
bounded by (5.5).

Clearly, every subspace M of a metrizable t.v.s. is metrizable; if x — |x| is a
pseudo-norm on L generating its topology, the restriction of x — [x| to M
generates the topology of M. Let L =]],L, be the product of countably
many metrizable t.v.s. Since the product topology is metrizable, (6.1) implies
that it can be generated by a pseudo-norm. Such a pseudo-norm can be
constructed explicitly if, on each factor L,(n € N), a generating pseudo-norm
x — | x|, is given: Writing x = (x,,),

d 1 'xn'n
n=1 2" 1+ X,
is a generating pseudo-norm on L. It is not difficult to verify conditions
(i)—(v) of (6.1); for (i) and (ii), recall that u — /(1 + u) is monotone for
u = 0 and that

x—|x| =

a+b a b
< +
l1+a+b " 1+4+a 1+5b

for any two real numbers a, b = 0. We leave it to the reader to verify that
x —|x| generates the product topology on L.
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For a quotient space L/M of a metrizable t.v.s. to be metrizable, M must
necessarily be closed by (2.3); this condition is also sufficient. In terms of a
generating pseudo-norm on L, we prove the following more detailed result.

6.3

The quotient space of a metrizable t.v.s. L over a closed subspace M is
metrizable, and if L is complete then L|M is complete. If x — |x| is a pseudo-
norm generating the topology of L, then (with £ = x + M)

£ - |&] =inf{|x]: x e £}
is a pseudo-norm generating the topology of L| M.

Proof. We note first that £ — |£| satisfies (i)—(iii) of (6.1). Clearly, |0] = 0;
if |8 =0, then O € &, since M is closed. For (ii), let ¢ >0 be given; then
|x] < |%| + &, [y| < || + € for suitable x € &, y € §; now,

2+ 91 = x+ yI = x| + [yl = |%] + [9] + 2e.

(i) follows from the corresponding property of x — |x| on L, since the quotient
map x — X is linear.

Let V, = {x:|x| <n '}(n e N). {V,} is a 0-neighborhood base in L; hence
{¢(V,)} is a O-neighborhood base in L/ M, since the natural map x — £ = ¢(x)
is both open and continuous. We set V¥, = {%: || <»n~!} and claim that
V, = ¢(V,) for n e N. Clearly, ¢(V,) = V,. Conversely, if £ € V,, there exists
x € % such that x € V,; hence ¢~ *(V,) = ¥, + M, which implies V7, = o(Vy).
Thus £ — |£| generates the topology of L/M.

There remains to show that L/M is complete when L is complete. Given a
Cauchy sequence in L/M, there exists a subsequence {f£,} such that
|£,+1 — %a| <27"7!(n € N). Hence there exist representatives y, . ; € £,+; — %,
such that |y,,,;| <27". Let x; € £, be arbitrarily chosen; then x, = x; +

Y, y,€%, for all n>2. Using condition (ii) of (6.1), it is readily verified
v=2

that {x,} is a Cauchy sequence in L, hence convergent to some x € L. Since
¢ is continuous, {£,} converges in L/M; thus the given Cauchy sequence
converges, which shows L/M to be complete.

We point out that if L is a non-metrizable, complete t.v.s. and if M is a
closed subspace of L, the quotient space L/M is, in general, not complete
(cf. Chapter 1V, Exercise 11).

7. COMPLEXIFICATION

In this section we consider vector spaces over a more restricted type of
fields K than were admissible so far: We assume that either X is a subfield of
R, or else that K is a subfield of C containing the imaginary unit i and in-
variant under conjugation; in both cases, K is understood to carry the in-
duced absolute value.
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Any such field can be written as K = H + iH if it contains the imaginary
unit i; H= K n Ris a subfield of R. If H is, on the other hand, a subfield of
R, let us denote by H(i) = H + iH the complex extension of H. If L is a
vector space over H, can scalar multiplication in L be extended to K = H{(i)?
If it can, then L possesses an automorphism u such that u> = —e (e the
identity mapping); namely, x — ix is such an automorphism. Conversely,
if u is an automorphism of L (over H) satisfying u?> = —e, then the definition
(4, pe H)

(A + iwx = Ax + pu(x) 1)

extends scalar multiplication to K = H + iH, which can be quickly verified.
Similarly, if L is a t.v.s. over H and if u is a (topological) automorphism of
L such that #?> = —e, then (1) makes L into a t.v.s. over K.

7.1

IfLis a t.v.s. over H < R, scalar multiplication in L has a continuous exten-
sion to H(i) x L into L if and only if L permits an automorphism u satisfying
2
u* = —e.

Conversely, if L is a vector space (or t.v.s.) over a field K = H(i) containing
i, then the restriction of scalar multiplication to H x L turns L into a vector
space (or t.v.s.) L, over H. L, will be called the real underlying space of (or
associated with) L. A real linear form on L is a linear form on L,, and a real
hyperplane in L is a hyperplane in L,. Accordingly, a real subspace (real
affine subspace) of L is a subspace (affine subspace) of L.

Let L be a vector space over K = H + iH and let fe L* be a linear form on
L. Then f=g +ih, where g, h are uniquely determined real-valued (more
precisely, H-valued) functions on L; obviously g and 4 are real linear forms on
L, called the real and imaginary parts of £, respectively. Since g(ix) + ih(ix) =
f(ix) = if (x) = ig(x) — h(x) for all x € L, we have

f(x) =g(x) —ig(ix)  (xeL). @)

Conversely, if g is any real linear form on L, then f, defined by (2), is a member
of L* (verification is left to the reader), and obviously the only one with
real part g. Moreover, if L is a t.v.s. over K, then (2) shows that fis continuous
if and only if g is continuous. We have proved:

7.2

Let L be a t.v.s. over K and let L, be its real underlying space. The mapping
f—> g defined by (2) is an isomorphism of (L*), onto (L,)*, carrying the space of
continuous linear forms on L onto the space of continuous linear forms on L.

For hyperplanes in L, we have the following result:



EXERCISES 33

7.3

Let L be a t.v.s. over K. Every (closed) hyperplane in L is the intersection of
two uniquely determined, (closed) real hyperplanes.

Proof. By (4.1), a hyperplane G in L is of the form G = {x: f(x) =y},
where feL* and y = a + ife K= H + iH. If g is the real part of f, then,
clearly, G = G; n G,, where G, = {x: g(x) = a}, G, = {x: g(ix) = — B}. Since
f is determined by G to within a non-zero factor, G, and G, are unique.
Moreover, by (4.2) and (7.2), G, and G, are closed if and only if G is closed
in L.

If L is a vector space over a field H = R, there does not always exist an
automorphism u of L satisfying u?> = —e; examples are furnished by real
vector spaces of finite odd dimension. It is still often desirable, especially for
the purposes of spectral theory, to imbed L isomorphically into a vector
space over K = H(i); the following procedure will provide such an imbedding.
Consider the product L x L over H. The mapping u: (x, y) > (—y, x) is an
automorphism (which is-topological if L is a t.v.s. over H) of L x L satisfying
u* = —e; thus scalar multiplication can be extended to K x L x L into
L x L by (1). Thus i(y, 0) = (0, y), and if we agree to write (x, 0) = x for all
xelL, then each zeL x L has a unique representation z = x + iy with
xeL,yeL. If Lis a t.v.s. over H, then L x L over K is a t.v.s. such that
(L x L)y = L@ iL. This type of imbedding is called the complexification of a
vector space (or t.v.s.) defined over a subfield of R.

It can be shown (Exercise 16) that every vector space over a conjugation
invariant field K = C such that K contains i, is algebraically isomorphic to the
complexification of any one of its maximal properly real subspaces.

EXERCISES

1. Let {L,: « € A} be a family of Hausdorff t.v.s. over K and denote
by B the family of subsets of the vector space L = [],L, obtained by
forming all products V =T],V,, where V (x € A) is any member of a
O-neighborhood base in L,. Let T denote the unique translation-
invariant topology on L for which B is a neighborhood base of 0. Let M
be the subspace of L containing exactly those elements x € L which
have only a finite number of non-zero coordinates (M is denoted by
@®,L, and called the algebraic direct sum of the family {L,}).

(@) If an infinite number of the spaces L, are not reduced to {0},
(L, T) is not a t.v.s.

(b) (M, X) is a Hausdorff t.v.s. which is complete if and only if each
L, is complete.

(c) A subset of M is bounded in (M, ) if and only if it is contained
in a set of the form [1,euB, x {0}, where H = A is finite and B, is
bounded in L, for « € H.

2. Let L be a t.v.s. which is not a Hausdorff space, and denote by N
the closure of {0}.



34

TOPOLOGICAL VECTOR SPACES [Ch. |

(a) The topology of the subspace N is the trivial topology whose only
members are N and . If M is any algebraic complementary subspace
of Nin L, then L =M @ N and M is isomorphic with the Hausdorff
t.v.s. associated with L (use (2.4).)

(b) Deduce from this that every t.v.s. L is isomorphic with a dense
subspace of a complete t.v.s. over the same field.

(c) Show that a subset 4 of L is totally bounded if and only if the can-
onical image of 4 in L/N is precompact.

3. Give an example of a finite-dimensional t.v.s. L over a (non-
complete) field K such that the completion of L is infinite-dimensional
over K, and locally compact.

4. Let Q be the rational number field under its usual absolute value

and let L = Q + Q /2. Show that L, under the topology induced by R,
is a t.v.s. over Q not isomorphic with @, x Q,.

5. Let B be asubset of at.v.s. such that every sequence in Bhasa clus-
ter point; then B is totally bounded. (For a given circled 0-neighborhood
V, let B, be a subset of B such that x € By, y € By, and x # y imply
x —y ¢ V, and which is maximal with respect to this property (Zorn’s
lemma); then B < B, + V. Show that the assumption * B, is infinite”’
is absurd.)

6. Let L?(0 <p < 1) be the vector space over R introduced in
Section 6, under the topology generated by the pseudo-norm f'— | f|, =
{17 du. Show that L? is a complete t.v.s. on which there exist no non-
zero continuous linear forms. (If u # 0 is a continuous linear form, then
|u(f)| =1 for some fe L. Denote by z, (0 < s < 1) the characteristic
function of [0, s] = [0, 1]; there exists # such that | fz,|, = | /(1 — z) |,
= 1| f|,. For at least one of the functions fz, and f(1 — z,), call it 3 1,
one has |u(3f;)| = 1. Moreover, | f;]|; = 2P| f|,. By induction, define a
sequence {f,} such that |u(f,)| = 1 and | f,|, = 2"®" V| f],.) (M. Day [1],
W. Robertson [1]).

7. Let L be a t.v.s. Show these assertions to be equivalent:

(a) Every subspace of finite codimension is dense in L.
(b) There exist no closed hyperplanes in L.
(c) No finite-dimensional subspace has a complementary subspace in L.

8. Construct a decomposition L = M + N of a t.v.s. L such that
M + N is an algebraic, but not a topological, direct sum (use Exercise 4
or Exercises 6, 7).

9. The dimension of a complete metrizable t.v.s. over a complete
field K is either finite or uncountably infinite (use Baire’s theorem).

10. Let {L,: x € A} be a family of metrizable t.v.s. The product
I'l.L, is metrizable only if A is countable, and the direct sum @,L, (the
space (M, T) of Exercise 1(b)) is metrizable only if A is finite.

11. Deduce from Exercise 10 an example of a complete Hausdorff
t.v.s. of countable dimension which is not metrizable.

12. (a) Let L be a vector space over K and let d be a translation-
invariant metric on L such that metric space (L, d) is complete. Suppose,
in addition, that 4, — 0 implies d(4,x, 0) =0 for each x e L and that
d(x,, 0) - 0 implies d(1x,, 0) — 0 for each A € K. Show that under the
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topology generated by d, L is a complete t.v.s. (Use Baire’s theorem to
show that (LT), holds.)
(b) Let L be the vector space over R of all real-valued continuous
functions on R. Show that f— sup | f(?)|/(1 + | f(?)]) is a pseudo-norm
teR

on L, and that under the topology generated by this pseudo-norm, L is
a complete topological group with respect to addition, but not a t.v.s.

13. The metric d(x, y) = tan™!|x — y| generates the unique topology
on R under which R, is a Hausdorff t.v.s., but the uniformity generated
by d (under which R is precompact) is distinct from the uniformity of
the t.v.s. R,.

14. Let d be a metric on a vector space L such that under the topology
T generated by 4, L is a t.v.s., and such that the metric space (L, d) is
complete. Then the t.v.s. (L, ) is complete. (V. L. Klee [1].)

15. Show that on the vector spaces R?"*!(n e N) there exists no auto-
morphism u satisfying u* = —e.

16. Let L be a vector space over a subfield K = H + iH of C, where
H is a subfield of R. Call a real subspace N of L properly real if N n iN =
{0}. There exists a properly real subspace M of L such that L = M + iM.
(Use Zorn’s lemma.) Cf. Chapter IV, Exercise 3.

17. Every t.v.s. (Hausdorff or not) over R or C is connected and
locally connected.

18. Find a formula relating the cardinality of a vector space L over K
with its dimension. Prove that if dim L = card K, then dim L* =
(card K)dimL,



Chapter 11

LOCALLY CONVEX
TOPOLOGICAL VECTOR SPACES

Since convexity will play a central role in all following chapters, the scalar
field K over which vector spaces are defined is from now on assumed to be the
real field R or the complex field C, unless the contrary is expressly stated.
In most definitions and results (for example, the Hahn-Banach theorem)
we shall not find it necessary to distinguish between the real and complex
case. When several vector spaces occur in one statement and no explicit
mention of the respective scalar fields is made, the spaces involved are
assumed to be defined over the same field K, where either K= R or K =C.
If K= C, R will be considered a subfield and restriction of scalars to R will
be indicated by the use of the adjective “real” (Chapter I, Section 7).
In particular, the symbols > and =, when used between scalars, refer
to the customary order in R; for example, “A > 0" means “Ae R and
A>07.

The theory of general topological vector spaces whose elements have been
presented in Chapter I can be extended in several directions (see, e.g.,
Bourgin [1], Hyers [1], [2], Landsberg [1], [2]); it remains on the whole an
unsatisfactory theory, devoid of a great number of valuable results both
from the pure and applied viewpoints. The concept of topological vector
space, as defined before, is too general to support a rich theory just as, on the
other hand, the concept of Banach space is too narrow. The notion on which
a satisfying and applicable theory can be built is that of local convexity; it is
the purpose of this chapter to acquaint the reader with the elementary
properties of topological vector spaces (over R or C) in which each point has
a base of convex neighborhoods.

Section 1 gives some topological properties of convex sets and introduces
semi-norms, a useful tool for the analytical description of certain convex
sets. Section 2 is devoted to a brief discussion of normable and normed
spaces. The literature on such spaces is vast, and the reader ought to be
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familiar with their elementary theory, which is now part of every first course
in abstract analysis; we confine ourselves to some basic results and a review
of the most frequent examples of normed spaces, including some facts on
Hilbert space that are recorded for later use. Section 3 proves the Hahn-
Banach theorem in its two forms called by Bourbaki [7] the geometrical
and analytical forms, respectively. This is the central result of the chapter and
fundamental for most of what follows later; it lends power to the notion of
locally convex space (due to J. von Neumann [1]), defined in Section 4.
Continuous semi-norms constitute an analytical alternative for the use of
convex circled 0-neighborhoods which is illustrated by the two forms of the
Hahn-Banach theorem; but while applications often suggest the use of semi-
norms, we feel that their exclusive or even preferred use does not support the
geometrical clarity of the subject.

The separation properties of convex sets, all consequences of the geometri-
cal form of the Hahn-Banach theorem, could logically follow Section 4; we
have preferred to place them at the end of the chapter so that the reader
would first have a survey of the class of spaces in which those separation
results are valid. Following a method extremely useful even in general
topology (cf. Prerequisites), we hope to give the reader an efficient way to
organize the various means of generating new locally convex spaces from
those of a given family, by simply distinguishing between projective and
inductive topologies. With the exception of spaces of linear mappings and
topological tensor products (Chapter III), Sections 5 and 6 of the present
chapter give all standard methods for constructing locally convex spaces.
It is interesting to observe ((5.4), Corollary 2) that every locally convex space
can be obtained as a subspace of a suitable product of Banach spaces. Two
classes of spaces particularly frequent in applications are discussed in
Sections 7 and 8. Section 9 furnishes the standard separation theorems
which are constantly used later. The chapter closes with a rather compressed
approach, following Bourbaki [7], to the Krein-Milman theorem. This is a
beautiful and important theorem of which everyone interested in topological
vector spaces should be aware; however, it has little bearing on the theory
to be presented here, and we refer to Klee [3]-[S] for a deep analysis and the
many ramifications of this result.

1. CONVEX SETS AND SEMI-NORMS

A subset A of a vector space L is convex if x € 4, y € 4 imply that Ax +
(1 — Ay e A for all scalars A satisfying 0 < A < 1. The sets {Ax + (1 — A)y:
0=<A1=1} and {Ax+ (1 — A)y:0 <A < 1} are called the closed and open
line segments, respectively, joining x and y. It is immediate that convexity
of a subset 4 = L is preserved under translations: 4 is convex if (and only
if) xo + A is convex for every x, € L.
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1.1

Let A be a convex subset of a t.v.s. L. If x is interior to A and y in the closure
of A, the open line segment joining x and y is interior to A.

Proof. Let 4,0 < A < 1, be fixed; we have to show that Ax + (1 — A)y e 4.
By a translation if necessary we can arrange that Ax + (1 — 1)y = 0. Now
y = ax where a <0. Since w— aw is a homeomorphism of L by (I, 1.1)*
and xe A4, ye A, there exists a ze 4 such that aze 4. Let u=a/(a — 1);
then 0 < u <1 and pz + (1 — p)az = 0. Hence

U={uw+ (1 — paz: we A}

is a neighborhood of 0 since w — uw + (1 — w)az is a homeomorphism of L
mapping z € A onto 0. But we 4 and az € 4 imply U < A4, since A4 is convex;
hence 0 € 4.

12

Let L be a t.v.s. and let A and B be convex subsets of L. Then A, A, A + B
and aA(a € K) are convex.

The convexity of A is immediate from (1.1); if A is fixed, 0 < A < 1, then
AA + (1 — )4 = A whence 14 + (1 — )4 = A by (LT), and (LT), (Chapter
1, Section 1); thus A4 is convex. The proof that 4 + B and a4 are convex is
left to the reader.

1.3

If A is convex with non-empty interior, then the closure A of A equals the
closure of A, and the interior A of A equals the interior of A.

Proof. Since A < A, (A) = 4 holds trivially. If 4 is convex and 4 non-
empty, (1.1) shows that 4 < (/f). To prove the second assertion, it suffices to
show that OE(/T) implies 0 e 4 if 4 is convex with non-empty interior.
There exists a circled neighborhood ¥ of 0 such that ¥ = 4. Since 4 = (4),
0 is in the closure of 4; hence A and V intersect. Let ye A n V. Since ¥V < 4
and V is circled, we have —y € 4 and it follows now from (1.1) that 0 € 4,
since 0 = 3y + 4(—»).

A cone C of vertex 0 is a subset of a vector space L invariant under all
homothetic maps x —Ax of strictly positive ratio A; if, in addition, C is
convex, then C is called a convex cone of vertex 0. Thus a convex cone of
vertex O is a subset of L such that C+ C< C and AC < C for all 1 >0. A
(convex) cone of vertex x, is a set x, + C, where C is a (convex) cone of
vertex 0. It is a simple exercise to show that the interior and the closure of a
(convex) cone of vertex O in a t.v.s. L are (convex) cones of vertex 0 in L.

* Roman numeral refers to chapter number.
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For subsets of a vector space L, the properties of being circled or con-
vex are invariant under the formation of arbitrary intersections. Since L has
both properties, every subset 4 = L determines a unique smallest subset
containing 4 and having any one or both of these properties, respectively :
the circled hull, the convex hull, and the convex, circled hull, of 4. The
circled hull of A4 is the set {ia: ae€ 4 and |A| < 1}; if 4 # &, the convex hull
of A is the set {Y A,a,}, where 4, >0, Y4, =1 and {a,} ranges over all non-
empty finite subsets of A (Exercise 1). The convex, circled hull of 4, denoted
by "4, is the convex hull of the circled hull of 4 (Exercise 1). By I ,4,, we
denote the convex, circled hull of the union of a family {4,: « € A}.

If L is a t.v.s., the properties of being circled or convex (or both) can be
combined with the property of being closed; obviously, the resulting notions
are again intersection-invariant. In particular, the closed, convex hull (some-
times referred to as the convex closure) of 4 = L is the closure of the convex
hull of A4, by (1.2); similarly, the closed, convex, circled hull of A4 is the closure
of the convex, circled hull of 4 (Exercise 1).

We turn to the investigation of convex, radial subsets of a vector space L;
certainly the convex hull of a radial set is of this type. If M is any radial
subset of L, the non-negative real function on L:

X = py(x) =inf{A > 0: x € AM},

is called the gauge, or Minkowski functional, of M. Obviously, if M is a radial
set in L and M < N, then py(x) < py(x) for all x € L, that is py < py.

We define a semi-norm on L to be the gauge of a radial, circled and convex
subset of L; a norm is a semi-norm p such that p(x) = 0 implies x = 0. The
following analytical description of semi-norms is often used as a definition.

1.4
A real-valued function p on a vector space L is a semi-norm if and only if
(@ px+ ) =px)+p(y)  (x,yel)
(b) p(ax) = |A|p(x) (xe L, 1€ K).

Proof. Let p be a semi-norm on L, that is, let p be p,,, where M is radial,
circled, and convex. If xe L, ye L are given and 4, > p(x), 4, > p(y), then
X+ yel M+ A,M. Since M is convex,

A A
WM+ A,M = (A + : : ;
MM + 4, (1+42)[11+22M+11+;12M]C(21+}~2)M,

this implies p(x + y) £ A, + 4,; hence p(x + y) < p(x) + p(y). For (b),
observe that Ax € uM is equivalent with |[A|x € uM, since M is circled; hence
if 1#0,

p(Ax) = inf{u > 0: x € |A] " 'uM} = inf {|A|w: x € uM} = |A|p(x) ;
>0
this proves (b), since p(0) = 0. !
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Conversely, assume that p is a function satisfying (a) and (b), and let
M = {x: p(x) < 1}. Clearly, M is radial and circled, and it follows from (a)
and (b) that M is convex. We show that p = p,,. It follows from (b) that
{x: p(x) < A} = AM for every 1> 0; hence if p(x) = «, then x € AM for all
A > abut for no A < «, which proves that p(x) = inf {1 > 0: x € AM} = pp,(x).

Simple examples show that the gauge function p of a radial set M < L
does not determine M ; however, if M is convex and circled, we have the
following result, whose proof is similar to that of (1.4) and will be omitted.

1.5

Let M be a radial, convex, circled subset of L, for the semi-norm p on L to be
the gauge of M, it is necessary and sufficient that My = M = M,, where
M, = {x: p(x) < 1} and M, = {x: p(x) £ 1}.

If L is a topological vector space, the continuity of a semi-norm p on L is
governed by the following relationship.

1.6
Let p be a semi-norm on the t.v.s. L. These properties of p are equivalent:

(a) p is continuous at 0 € L.
(b) My = {x: p(x) < 1} is open in L.
(c) p is uniformly continuous on L.

Proof. (a)=(c), since by (1.4), |p(x) — p(»)| < p(x — y) for all x,yelL.
(c) = (b), since M, =p~![(— o0, 1)]. (b) = (a), since eM, = {x: p(x) < &} for
alle > 0.

A subset of a t.v.s. L that is closed, convex, and has non-empty interior is
called a convex body in L. Thus if p is a continuous semi-norm on L, M, =
{x: p(x) < 1} is a convex body in L.

2. NORMED AND NORMABLE SPACES

By the definition given in Section 1, a norm p on a vector space L (over R
or C) is the gauge of a convex, circled, radial set which contains no subspace
of L other than {0}; frequently a norm is denoted by | |. We recall from
(1.4) that a norm || || on L is characterized by these analytical properties:

() |[Ax||= 14| lIx|| for all Ae K, x € L.
(i) Ix +yll = lix|| + [yl forall xe L, y € L.
(iii) ||x|| = O implies x = 0.

We define a normed space to be a pair (L, || ||), with the understanding
that L carries the topology generated by the metric (x, y) — |lx — y||. Under
this topology, L is a t.v.s. (This is clear from the discussion following (I, 6.1),
since a norm is also a special case of a pseudonorm (not only of a semi-
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norm); in view of this, it is possible to define normed spaces over arbitrary,
non-discrete valuated fields (Exercise 5), but we do not follow this usage.) By
contrast, a normable space is a t.v.s. L whose topology can be obtained from
a norm || || on L via the metric (x, y) — |lx — y||; such a norm is, of course,
not unique (Exercise 5). A complete normed space is called a Banach space,
or briefly (B)-space. A norm preserving isomorphism of one normed space
onto another is called a norm isomorphism, and two normed spaces are called
norm isomorphic if there exists a norm isomorphism between them. The set
{x: |Ix]| = 1} is the (closed) unit ball of (L, || ||).

There is a simple necessary and sufficient condition for a (necessarily
Hausdorff) t.v.s. to be normable; the result is due to Kolmogoroff [1].

21

A Hausdorff t.v.s. L is normable if and only if L possesses a bounded, convex
neighborhood of 0.

Proof. The condition is necessary, for if x — [[x| generates the topology
of L, V, ={x: |x|| < 1} is a convex neighborhood of 0 which is bounded,
since, by (i) above, the multiples {» =¥, }(n € N) form a O-neighborhood base
in L. Conversely, if V is a convex, bounded 0-neighborhood in L, there exists
a circled neighborhood contained in ¥ whose convex hull U is bounded (since
it is contained in V). Clearly, the gauge p of U is a norm on L. Now the
boundedness of U implies that {n"'U}(ne N) is a 0-neighborhood base,
whence it follows that p generates the topology of L.

The completion L of a normable space L is normable, for if ¥ is a bounded,
convex 0-neighborhood in L, its closure V in L is bounded by (I, 1.5) and
convex by (1.2). If (L, p) is a normed space, then p, which is uniformly con-
tinuous on L by (1.6), has a unique continuous extension p to L that generates
the topology of L; (L, p) is a Banach space. It is obvious that a subspace of a
normable space is normable and that a closed subspace of a Banach space is a
Banach space. However,

22

The product of a family of normable spaces is normable if and only if the
number of factors #{0} is finite.

Proof. This follows quickly from (2.1), since, by (I, 5.5), a 0-neighborhood
in the product [],L, can be bounded if and only if the number of factors
L, # {0} is finite.

REMARK. A norm generating the topology of the product of a finite
family of normed spaces can be constructed from the given norms in a
variety of ways (Exercise 4).
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The quotient space of a normable (and complete) t.v.s. L over a closed
subspace M is normable (and complete). If (L, || ||) is a normed space, the
norm X — ||X|| = inf{||x|: x € X} generates the topology of L|M.

Proof. Since M is closed, L/M is Hausdorff by (I, 2.3); since the natural
map ¢ of L onto L/M is linear, open, and continuous, ¢(¥) is a convex
0-neighborhood in L/M which is bounded by (I, 5.4) if ¥V is a bounded,
convex 0-neighborhood in L; thus L/M is normable by (2.1). By (I, 6.3) L/ M
is complete when L is, and the pseudonorm £ — ||£||, which is easily seen to be
a norm, generates the topology of L/ M.

It is immediate that the bounded sets in a normed space L are exactly those
subsets on which x — ||x|| is bounded. Thus if L, N are normed spaces over
K, and u is a continuous linear map on L into N, it follows from (I, 5.4) that
the number

l[u]] = sup{|lu(x)||: x € L, |Ix|| = 1}

is finite. It is easy to show that ¥ — |ju|| is a norm on the vector space £(L, N)
over K of all continuous linear maps on L into N. #(L, N) is a Banach space
under this norm if N is a Banach space; in particular, if N is taken to be
the one-dimensional Banach space (K, | |) (cf. Chapter I, Section 3) then
L' = ¥Y(L, K,), endowed with the above norm, is a Banach space called the
strong dual of L.

Examples

The following examples are intended to present some principal types of
Banach spaces occurring in analysis. As normed spaces in general, these
spaces have been widely covered in the literature (e.g., Day [2], Dunford-
Schwartz [1], Ko6the [5]), to which we refer for details.

1. Let X be a non-empty set. Denote by B(X) the vector space over
K(K = R or C) of all K-valued bounded functions; under the norm
f=1Ifl=sup{|f(®)|: t € X}, B(X) is a Banach space. If X, is any
subset of X, the subset of all f € B(X) vanishing on X, is a closed sub-
space.

If T is a o-algebra of subsets of X (cf. Halmos [1]), let M(X, Z) be the
set of all =-measurable functions in B(X); M(X, X) is a closed subspace
of B(X).

If X is a topological space and €(X) the set of all continuous functions
in B(X), (X) is a closed subspace of B(X).

An example of particular importance is the space €(X) when X is a
compact (Hausdorff) space. Using the fact that all (except the second)
of the preceding spaces are vector lattices of a particular type, it can be
proved (Chapter V, Theorem 8.5) that each of them is norm-isomorphic
to a space ¢(X), where X is a suitable compact space.
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2. Let (X, Z, u) be a measure space in the sense of Halmos [1], so
that u is a non-negative (possibly infinity-valued), countably additive
set function defined on the o-algebra T of subsets of X. Denote by #*
the set of all X-measurable, scalar-valued functions f for which |f[?
(1 £ p < 0) is p-integrable; the well-known inequalities of Holder and
Minkowski (cf. Halmos, l.c.) show that #? is a vector space and that
f- (j' | f|Pdu)!/? is a semi-norm on £*. If &, denotes the subspace of
&P consisting of all u-null functions and [f] the equivalence class of
f€ %P mod A, then

1 f 1Pyt

is a norm on the quotient space £?/.4",, which thus becomes a Banach
space usually denoted by LP(p).

&£ commonly denotes the vector space of u-essentially bounded
X-measurable functions on X; a X-measurable function is p-essentially
bounded if its equivalence class mod 4", contains a bounded function.
Thus £®/ A, is algebraically isomorphic with M(X, Z)/(A", N M(X, Z));
the latter quotient of M(X, X) is a Banach space usually denoted by
L*(u). L*(p) is again norm-isomorphic to ¢(X) for a suitable compact
space X.

3. Let X be a compact space. Each continuous linear form f— uq(f)
on 4(X) is called a Radon measure on X (Bourbaki [9], Chapter ITI).
For each u,, there exists a unique regular signed (respectively, complex)
Borel measure u on X in the sense of Halmos [1] such that py(f) =
{fdu for all fe€(X). The correspondence p,— p is a norm isomor-
phism of the strong dual #(X) of ¥(X) onto the Banach space of all
finite signed (respectively, complex) regular Borel measures on X, the
norm ||u|| being the total variation of u. Because of this correspondence,
one frequently writes po(f) = [ fdu,.

Returning to the general case where (X, X, i) is an arbitrary measure
space (Example 2, above), let us note that for 1 < p < + o0, the strong
dual of L”(u) can be identified with L(u), where p~* + ¢~ ! = 1, in the
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sense that the correspondence [g]— ([f]—[fgdy) is a norm iso-

morphism of L) onto the strong dual of L?(u). In the same fashion,
the strong dual of L'(u) can be identified with L®(u) whenever u is
totally o-finite. (For a complete discussion of the duality between
LP(u) and L(p), see Kelley-Namioka [1], 14. M.)

4. Let Z, denote the open unit disk in the complex plane. Denote by
H?(1 < p < + ) the subspace of C?° consisting of all functions which
are holomorphic on Z, and for which

2n . 1/p
A1, =oiu21(fo lf(re")l"dt)

is finite; f— ||f||, is a norm on A under which H? is a complex Banach
space. Similarly, the space of all bounded holomorphic functions on Z,
is a complex Banach space H® under the norm f— ||f |, = sup{|/()|:
{ € Z,}; for details we refer to Hoffman [1].
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The preceding examples can be substantially extended by considering
Banach spaces of functions taking their values in an arbitrary (B)-
space F.

5. An especially important class of Banach spaces is the class of Hil-
bert spaces. The presence of an inner product distinguishes Hilbert
spaces quite drastically from general Banach spaces; the theory of
Hilbert spaces, and in particular of their linear transformations, is
elaborate and the literature is very extensive. For later use, we record
here only the definition and the most elementary properties of Hilbert
space; see also Bourbaki ([8], chap. V), Halmos [2], and Sz.-Nagy [1].

Let H be a vector space over C and let (x, y) — [x, y] be a complex-
valued function on H x H such that the following conditions are satis-
fied («* denoting the complex conjugate of a € C):

(i) For each y € H, x — [x, y] is a linear form on H.
(i) [x,y]=[y, x]* forall xe H, y € H.
(iii) [x, x] =0 for all x € H.
@iv) [x, x] =0 implies x = 0.
The mapping (x, y) = [x, y] is called a positive definite Hermitian form

(or inner product); x — \/[x, x]isanorm || ||on H,and (H, || ||)iscalled
a pre-Hilbert (or inner product) space. The inner product satisfies
Schwarz’ inequality: |[x, y]| < [Ix| [ly|l. If the normed space (H, | )
is complete (hence a Banach space), it is called a Hilbert space. The cor-
responding notion of real inner product space or real Hilbert space,
respectively, is obtained by assuming (x, y) = [x, y] to be real valued
and H tobeareal vectorspace. A functionon H x H satisfying (i) through
(iii) but not necessarily (iv) is called a positive semi-definite Hermitian

form; in these circumstances, x — \/[x, x] = p(x) is a semi-norm on H,
and the quotient space H/p~*(0) is an inner product space under (£, )
— [x, y], where x — £ denotes the canonical map of H onto H/p~(0).

It is clear that the property of being an inner product (respectively,
Hilbert) space is inherited by subspaces (respectively, by closed
subspaces). More important, every closed subspace M of an inner prod-
uct space H possesses a (topologically) complementary subspace: the
subspace M* = {x € H: [x, y] =0 for all y € M}, called the subspace
of H orthogonal to M, satisfies the relation H = M @ M™. The projec-
tion of H on to M thatvanishes on M* is called the orthogonal projection
of H onto M. Hence for every closed subspace M of H, the quotient
space H/M, being norm isomorphic with M=, is an inner product space.
A subset {x,: o € A} of H is orthonormal if [x,, x;] = J,5foralla, e A;
any total orthonormal subset is called an orthonormal basis of H (cf.
Chapter III, Section 9 and Exercise 23). The existence of orthonormal
bases in every complete inner product space H is implied by Zorn’s lem-
ma, and it can be shown that every orthonormal basis of H has the same
cardinality d; d is called the Hilbert dimension of H.

Every Hilbert space H is self-dual in the following sense: If fis a con-
tinuous linear form on H, there exists a unique element z € H such
that f(x) = [x, z](x € H); f— z is a norm-preserving, additive map of
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the strong dual H’' onto H under which of is mapped onto a*z(a € C),
and which is therefore called conjugate-linear. (f— z is a norm iso-
morphism if H is a real Hilbert space.) This has an immediate conse-
quence: If H,, H, are Hilbert spaces and u is a continuous linear map
of H, into H,, then the identity [u(x), y], = [x, u*(»)]; on H; x H,
defines a continuous linear map u* of H, into H,, called the conjugate
of u. It is easy to see that |ju| = ||u*| and that ¥ — u* is a conjugate-
linear map of ¥(H,, H,) onto ¥Z(H,, H,).

The most important concrete examples of Hilbert spaces are the spaces
L*(u) (Example 2 above) with inner product | fg* du; special instances of
the latter are the spaces /2 (or /2(A)), defined to be the subspace of CA
(or of RA in the real case) of all families {£,: « € A} for which 3 ,|&,|?
< + o0, A being a set of cardinality d. The inner product on these
spaces is defined to be [&, ] = En*; for each pair (&, 1) the family
{&n*%: a € A}, which has at most countably many non-zero members,
is summable by Schwarz’ inequality. (Cf. Chapter III, Exercise 23.)
Every Hilbert space of Hilbert dimension d is isomorphic with /2; if
{x,:a € A} is any orthonormal basis of H, the mapping x — {[x, x,]:
o € A} is an isomorphism of H onto /2.

Finally, the method used in constructing the spaces /?(A) can be
applied to any family {H,: « € A} of Hilbert spaces. Consider the sub-
space H of T[], H, consisting of all elements (x,) such that the family
{lIx,|[*: @ € A} is summable; then [x, y] = X, [x,, y,] defines an inner
product under which H becomes a Hilbert space; H is called the Hilbert
direct sum of the family {H,: @ € A}. In particular, if A is finite, then
H =T],H, and the topology of the Hilbert direct sum is the product
topology (cf. Exercise 4) ; hence each finite product of Hilbert spaces is a
Hilbert space in a natural way.

3. THE HAHN-BANACH THEOREM

In the preceding section we have seen that the strong dual of a Banach
space is a Banach space; however, we could not assert that this space always
contains elements other than 0. We have also seen (Chapter 1, Exercise 6)
that there exist metrizable t.v.s. on which O is the only continuous linear
form. It is the purpose of this section to establish a theorem guaranteeing
that on a large class of t.v.s. (Section 4), including the normable spaces, there
exist sufficiently many continuous linear forms to distinguish points. This
result, the theorem of Hahn-Banach, is undoubtedly one of the most im-
portant and far-reaching theorems in functional analysis.

We begin by establishing a lemma that contains the core of the Hahn-
Banach theorem.

LEMMA. Let L be a Hausdorff t.v.s. over R of dimension at least 2. If B is an
open, convex set in L not containing 0, there exists a one-dimensional subspace
of L not intersecting B.
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Proof. Let E be any fixed two-dimensional subspace of L. If En B = (&,
the result is immediate; so let us assume that B, = E N B is non-empty.
B, is a convex, open subset of E not containing 0. By (I, 3.2) we can identify
E with R} (the Euclidean plane). Project B, onto a subset of the unit circle
C of E by the mapping

= (52) =6+

Since B, being convex, is connected, f(B,) is connected, for fis continuous
on B, ; moreover, f(B,) is an open subset of C. Hence f(B,) is an open arc on
C which subtends an angle <= at 0; otherwise, there would exist points in B,
whose images under f are diametrical, contradicting the hypothesis 0 ¢ B,,
since B, is convex. Consequently, there exists a straight line in E passing
through 0 and not intersecting B,.

The following theorem is sometimes called Mazur’s theorem (cf. Day [2]),
and is virtually the geometrical form of the Hahn-Banach theorem (Bourbaki

[7D.

3.1

Theorem. Let L be a t.v.s., let M be a linear manifold in L, and let A be
a non-empty convex, open subset of L, not intersecting M. There exists a closed
hyperplane in L, containing M and not intersecting A.

Proof. After a translation, if necessary, we can have 0 € M, so that M is a
subspace of L. Consider the set 9 of all closed real subspaces of L that con-
tain M and do not intersect 4; M is non-empty, since M € M.

Order M by inclusion <. If {M,} is a totally ordered subset of I, the
closure of |J,M, is clearly its least upper bound; hence by Zorn’s lemma there
exists a maximal element H, of M. If L, denotes the real underlying space of
L (Chapter I, Section 7), the quotient space L,/H, is Hausdorff by (I, 2.3),
for H, is closed. Because of A # &, L,/H, has dimension =1; suppose that
Ly/H, is of dimension =2. Since the natural map ¢ of L, onto Ly/H, is
linear and open, B = ¢(A) is a convex, open subset of L,/H,, not containing
0, since H, does not intersect 4. Hence by the preceding lemma, there exists
a one-dimensional subspace N of L,/H, not intersecting B; this implies
that H =¢ ~!(N) is a closed subspace of L, containing H, properly and not
intersecting 4. This contradicts the maximality of H, in 9; hence Ly/H,
has dimension 1, and H,, is a closed, real hyperplane containing M and not
intersecting 4. This completes the proof when L is a t.v.s. over R.

If Lisat.v.s. over C, then M = iM (assuming 0 € M), since M is a subspace
of L. Consequently H, = H, n iH,, which is a closed hyperplane in L not
intersecting A, contains M, and the proof is complete.
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COROLLARY. If L is a t.v.s., there exists a continuous linear form f# 0 on L
if and only if L contains a non-empty convex, open subset A # L.

Proof. If f # 01is a continuous linear form on L, the subset 4 = {x: | f(x)| <1}
is #L, convex, and open. Conversely, if the convex set 4 = L is open and
X, ¢ A, x, is contained in a closed hyperplane (not intersecting 4) by (3.1)
which by (I, 4.2) implies the existence of a non-zero continuous linear form
on L.

We deduce now from (3.1) its analytic equivalent, the theorem of Hahn-
Banach; for a more general form valid in real vector spaces, see Exercise 6.
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Theorem. Let L be a vector space, let p be a semi-norm on L, and let M
be a subspace of L. If f is a linear form on M such that | f(x)| £ p(x) for all
x € M, there exists a linear form f, extending f to L and such that | fi(x)| < p(x)
for all x e L.

Proof. Since the case f=0 is trivial, we assume that f(x) # 0 for some
x € M. By (I, 1.2), the convex, circled sets V, ={xeL: p(x)<n~!}, neN,
form a O-neighborhood base for a topology ¥ under which L is a t.v.s.
Define H = {x € M: f(x) = 1} then H is a hyperplane in M and a linear
manifold in L. Let 4 =V,; 4 is open in L(T) by (1.6) and 4 n H = &,
since p(x) = 1 for x € H. By (3.1) there exists a hyperplane H; in L, containing
H and not intersecting 4. Since H; n M # M (for 0 ¢ H,) and H, o H, it
follows that H; n M = H, since H and H; n M are both hyperplanes in M.
By (I, 4.1), we have H, = {x: f{(x) = 1} for some linear form f; on L, since
0¢ H,. Now H = H; n M implies that f(x) = fi(x) for all x € M; that is, f;
is an extension of f'to L. From H; n A = (&, it follows that | fi(x)| < p(x) for
all x € L, thus completing the proof.

COROLLARY. If (L, | ||) is a normed space, M is a subspace of L, and f is a
linear form on M such that | f(X)| £ |Ix|| (x € M), then f has a linear extension
/i 10 L satisfying | f,(x)| < IIx|| (x € L).

This is the classical form of the theorem for normed spaces.

4. LOCALLY CONVEX SPACES

A topological vector space E over R or C will be called lecally convex if it
is a Hausdorff space such that every neighborhood of any x € E contains a
convex neighborhood of x. Equivalently, E is a locally convex t.v.s. or briefly
locally convex space (l.c.s.) if the convex neighborhoods of O form a base at
0 with intersection {0}. A topology on a vector space over R or C, not neces-
sarily Hausdorff but satisfying (LT), and (LT), (Chapter I, Section 1) and
possessing a base of convex O-neighborhoods, is called a locally convex
topology. It will be convenient to have this distinction, since the majority
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of the valuable results produced by convexity (such as Corollary 1 of (4.2),
below) holds only in Hausdorff spaces, while it is sometimes necessary (such
as in the proof of (3.2), above) to consider locally convex topologies that
are not separated.

By the topological dual (or briefly dual) of a t.v.s. L, we understand the
vector space L’ of continuous linear forms on L; L’ is a subspace of the
algebraic dual L* of L. If E is a l.c.s., its dual E’ separates points in E; that
is, for any two elements x, y€ E, x # y, there exists an fe€ E’ such that
f(x) # f(»). (Equivalently, for every non-zero x € E there exists f€ E’ with
f(x) #0.) This important result is an immediate consequence of (3.1), and
formally contained in (4.2), Corollary 1.

If E is a vector space, a locally convex topology on E can geometrically be
defined by selecting a filter base B in E, consisting of radial, convex, circled
sets and such that Ve B implies Ve B; since $V+ 3V =V by the
convexity of each V, the corollary of (I, 1.2) implies that B is a 0-neighbor-
hood base for a unique locally convex topology. Conversely, every l.c.
topology on E can be so defined; for example, the family of all closed,
convex, circled 0-neighborhoods is a base at 0.

Analytically a locally convex topology on E is determined by an arbitrary
family {p,. ® € A} of semi-norms as follows: For each ae€ A, let U, =
{x € E: p(x) £ 1} and consider the family {»~*U}, where 7 runs through all
positive integers and U ranges over all finite intersections of sets U, (x € A).
This family B satisfies the conditions indicated above and hence is a base at
0 for a locally convex topology ¥ on E, called the topology generated by the
family {p,}; equivalently, {p,} is said to be a generating family of semi-norms
for T. Conversely, every locally convex topology on E is generated by a
suitable family of semi-norms; it suffices to take the gauge functions of a
family of convex, circled 0-neighborhoods whose positive multiples form a
subbase at 0. It is clear from (1.6) that every member of a generating family
of semi-norms is continuous for ¥, and it is easy to see that T is Hausdorff
if and only if for each non-zero x € E and each family 2 of semi-norms
generating T there exists p € 2 such that p(x) > 0. We can leave it to the
reader to prove that, for a given l.c. topology I, the smallest cardinality of a
base at O is identical with the smallest cardinality of a generating family of
semi-norms, except when the latter is 1.

It is a direct consequence of the definitions (Chapter I, Section 2) that
induced, quotient, and product topologies of locally convex topologies are
locally convex; accordingly, subspaces, separated quotients, and products of
l.c.s. are again l.c.s. These will be discussed in the subsequent sections. Here
we confine ourselves to a few simple facts concerning metrizable l.c.s.

In view of (I, 6.1) a l.c.s. is metrizable if and only if it possesses a countable
base at O consisting of convex, circled sets, and hence a base which consists of
the members of a decreasing sequence {U,} of convex, circled sets. Equiva-
lently, a l.c.s. is metrizable if and only if its topology is generated by a
countable family of semi-norms, and hence by a sequence of semi-norms
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{p,} which is increasing. A complete metrizable 1.c.s. is called a Fréchet-space,
or briefly (F)-space. Clearly, every complete normable space (and hence
every Banach space) is an (F)-space; the simplest example of an (F)-space
which is not normable is furnished by the space K} of all numerical se-
quences under the product topology (K% is not normable by (I, 5.5) and (2.2)).
It follows from the results of Chapter I, Section 6, that every closed subspace
and every separated quotient of an (F)-space is an (F)-space, and so is every
countable product of (F)-spaces.

As a simple example for the definition of a locally convex topology by
families of semi-norms, let E be any vector space with algebraic dual E¥*,
and suppose that M is a subset of E* (M # ). The semi-norms x — | f(x)|
(fe M) generate a locally convex topology on E under which E is a l.c.s.
if and only if M separates points in E.
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The completion E of a l.c.s. E is a l.c.s., whose topology is generated by the
continuous extensions to E of the members of any generating family of semi-
norms on E.

Proof. If p is any member of a family £ of generating semi-norms on E,
p has a unique continuous extension p to E by (1.6). If U = {x € E: p(x) < 1},
then U = {x € E: p(x) £ 1} is the closure of U in E. It follows from (I, 1.5)
that E is a l.c.s. (since U is convex) and that {p: p € 2} is a generating family
of semi-norms on E.

The following consequence of the Hahn-Banach theorem reflects a basic
property of locally convex topologies :

4.2

Theorem. Let E be a t.v.s. whose topology is locally convex. If f is a
linear form, defined and continuous on a subspace M of E, then f has a con-
tinuous linear extension to E.

Proof. Since fis continuous on M, V = {x: | f(x)| £ 1} is a O-neighborhood
in M. There exists a convex, circled 0-neighborhood U in E such that
Un M c V,; the gauge p of U is a continuous semi-norm on E such that
| f(2)] £ p(x) on M, since U n M < V. By (3.2) there exists an extension f;
of fto E such that | f;(x)| < p(x) on E; f; is continuous, since | f,(x) — fi(»)| S ¢
whenever x — y e eU (¢ > 0).

COROLLARY 1. Giveg n (n € N) linearly independent elements x, of a l.c.s. E,
there exist n continuous linear forms f, on E such that f,(x,) =6,, (u,v=
1, ..., n).

Proof. Denote by M the n-dimensional subspace with basis {x,} in E.
By (I, 3.4), the linear forms g, (u=1, ..., n) on M which are determined
by g,(x,) = é,,, where 6,, =1 and 6,,=0 for u#v (u, v=1,...,n), are
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continuous. Any set {f,} of continuous extensions of the respective forms Iu
to E has the required properties.

COROLLARY 2. Any finite-dimensional subspace M of a l.c.s. E has a comple-
mentary subspace.

Proof. Let M have dimension » and let { f,} be n continuous linear forms on
E whose restrictions to M are linearly independent (cf. Corollary 1). Then

N =) f,0) is a closed subspace of E and an algebraic complementary
=1
subs‘}‘)ace of M, and the assertion follows from (I, 3.5).

If E is a t.v.s. whose topology is locally convex, the definition of bounded-
ness (Chapter I, Section 5) implies that the convex hull of a bounded subset
of E is bounded. In particular, the family of all closed, convex, and circled
bounded subsets is a fundamental system of bounded sets in E.

4.3

In every locally convex space, the convex hull and the convex, circled hull of
a precompact subset is precompact.

Proof. Since the circled hull of a precompact set is clearly precompact
(cf. Chapter I, 5.1), it is enough to prove the assertion for convex hulls; the
reader will notice, however, that (with the obvious modifications) the follow-
ing proof also applies to convex, circled hulls. Observe first that the convex
huli P of a finite set {a;: i = 1, ..., n} is compact, for P is the image of the

compact simplex {(4, ..., 4,): 4,20, Y A; =1} = R" under the continuous
1

map (4y,...,A4,) = Y Aa;. (This is a special case of (10.2) below.) Now let
B < E be precompact, C the convex hull of B, V" an arbitrary convex neighbor-
hood of 0 in E. Supposing B to be non-empty, there exist elements a; € B

(i=1,...,n) such that B < L")(ai + V). The convex hull P of {a;} is compact,
and CcP+ V, since P+1V is convex and contains B; hence we have
Pc U(b + V) for a suitable finite subset {b;:j=1,...,m) of P = C, and it
follows that C = U(b + 2V), which shows C to be precompact.

COROLLARY. If E is a quasi-complete l.c.s., then the closed, convex hull and
the closed, convex, circled hull of every precompact subset of E are compact.

However, if E is not quasi-complete, then the closed, convex hull of a
compact subset of E can fail to be compact (Exercise 27).

For the construction of locally convex spaces from those of a given class a
substantially more general approach proves fruitful than we have discussed
in Chapter I, Section 2, for arbitrary topological vector spaces; the two
following sections are concerned with two basic methods of generating
locally convex spaces.
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5. PROJECTIVE TOPOLOGIES

Let E and E, (« € A) be vector spaces over K, let f, be a linear map on E
into E,, and let T, be a locally convex topology on E, (x € A). The projective
topology T on E with respect to the family {(E,, T,, f,): « € A} is the coarsest
topology on E for which each of the mappings f, (@ € A) on F into (E,, T,) is
continuous.

Clearly, T is the upper bound (in the lattice of topologies on E) of the
topologies f71(T,) (xe A); if xe E and x, = f,(x) € E,, a T-neighborhood

base of x is given by all intersections () f,*(U,), where U, is any neighbor-
aeH

hood of x, with respect to T,, and H is any finite subset of A. Since the f,
are linear maps and the ¥, are locally convex topologies on the respective
spaces, E,, T is a translation-invariant topology on E with a base of convex
0-neighborhoods satisfying conditions (a) and (b) of (I, 1.2); hence I is a
locally convex topology on E.

5.1

The projective topology on E with respect to the family {(E,, T, f,): « € A}
is a Hausdorff topology if and only if for each non-zero x € E, there exists an
o € A and a 0-neighborhood U, c E, such that f(x) ¢ U,.

Proof. If T is Hausdorff and 0 # x € E, there exists a 0-neighborhood U in
(E, T) not containing x; since there exist 0-neighborhhods U, = E, and a
finite subset H = A with () f;'(U,) = U, we must have f,(x) ¢ U, for some

aeH

o € H. Conversely, f,(x) ¢ U, implies x ¢ £ }(U,) which shows T to be a
Hausdorff topology.
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A mapping u of a topological space F into E, where E is endowed with the
projective topology defined by the family {(E,, T,, f,): o € A}, is continuous if
and only if for each a € A, f, o u is continuous on F into (E,, T,).

Proof. If u is continuous, then, clearly, so is each f, o u (x € A). Conversely,
let G, be any open subset of E,; then u™![f;'(G,)] is an open subset of F.
Now each open subset G of E is the union of a suitable family of finite
intersections of sets f; '(G,), whence it follows that u~!(G) is open in F, and
hence u is continuous.

The reader will have noticed that no vector space concepts are needed in
the preceding result; in fact, it reflects a general property of projective
topologies (cf. Prerequisites).

We proceed to enumerate the most important examples of projective
locally convex topologies.
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Subspaces. Let M be a subspace of the l.c.s. (E, I); the topology of M
(i.e., the topology induced on M by ¥) is the projective topology on M with
respect to the canonical imbedding M — E.

Products. Let {(E,, T,): « € A} be a family of t.v.s., each T, being a locally
convex topology. The product topology T on E = [ [,E, (Chapter I, Section 2)
is evidently locally convex; T is the projective topology on E with respect to
the projections E— E, (« € A). In particular, the product of any family of
l.c.s.is a l.c.s.

Upper Bounds. Let {T,: a € A} be a family of locally convex topologies on a
vector space E; their least upper bound ¥ (in the lattice of topologies on E)
is a locally convex topology which is a projective topology; in fact, I is the
projective topology with respect to the family {(E, T,, €): « € A}, where e is
the identity map of E.

Weak Topologies. Let E be a vector space over K and let F be a subset of
E* that is non-empty. Set E, = K, for every f'e F; the projective topology
on E with respect to the family {(E,, f): f€ F} is called the weak topology
generated by F, and is denoted by o(FE, F). Since F can be replaced by its
linear hull in E* without changing the corresponding projective topology,
F can be assumed to be a subspace of E*. By (5.1), E is a l.c.s. under o(E, F)
if and only if F separates points in E.

In particular, when (E,¥) is a locally convex space, then its dual E’
separates points in E by (4.2), Corollary 1; o(E, E’) is called the weak topology
of E (associated with T if this distinction is necessary). On the other hand, E’
is a l.c.s. under o(E’, E), called the weak dual of (E, I); here E is to be
viewed as a subspace of (E')*.

Projective Limits. Let A be an index set directed under a (reflexive, transi-
tive, anti-symmetric) relation “ < 7, let {E,: « € A} be a family of l.c.s. over
K, and denote, for « < B, by g,; a continuous linear map of Ej; into E,.
Let E be the subspace of | [,E, whose elements x = (x,) satisfy the relation
X, = gn5(xg) whenever o < f; E is called the projective limit of the family
{E,: « € A} with respect to the mappings g,s(«, f € A; a < f), and denoted by
lim g,4E,. It is evident that the topology of E is the projective topology on E
with respect to the family {(E£,, I,, f,): « € A}, where T, denotes the topology
of E,, and f, denotes the restriction to E of the projection map p, of [ [E;
onto E,.

5.3

The projective limit of a family of quasi-complete (respectively, complete)
locally convex spaces is quasi-complete (respectively, complete).
Proof. Let E =lim g,4E;, F=]].E, If every E, is complete, then F is
-

complete; if every E, is quasi-complete, so is F by (I, 5.6). Hence the propo-
sition will be proved when we show that E is a closed subspace of F. Denote,
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for each pair (¢, ) € A x A such that « < B, by V,, the subspace {x: x, —
9ap(xg) = 0} of F. Since E, is Hausdorff and V,, is the null space of the
continuous linear map p, —g,z°ps of F into E,, V, is closed; thus
E = ) V, is closed in F.

asp
The product [ [,E, of a family {E,: @ € A} of L.c.s. is itself an example of a
projective limit. If {H} denotes the family of all non-empty finite subsets of
A, ordered by inclusion, Ey = [] E, and gy, denotes the projection of

aeH

E, onto Ey when HcA, then [[E, = 1(12 guaEx. Other examples of
projective limits are provided by the duals of inductive limits (Chapter IV,
Section 4), for which concrete examples will be given in Section 6. In the
proof of (5.4) below we construct, for every complete locally convex space E,
a projective limit of Banach spaces to which E is isomorphic. Finally, we
point out that, in general, there is nothing to prevent a projective limit of
l.c.s. from being {0}; but it can be shown (Exercise 10) that if A is countable
and certain additional conditions are satisfied, then p,(E) = E, (x € A).
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Every complete l.c.s. E is isomorphic to a projective limit of a family of Banach
spaces; this family can be so chosen that its cardinality equals the cardinality
of a given 0-neighborhood base in E.

Proof. Let {U,: « € A} denote a given base of convex, circled neighbor-
hoods of 0 in E. A is directed under the relation « < §, defined by “« < g if
U, < U,”. Denote by p, the gauge of U, and set F, = E/V,, where V, = p; 1(0)
(o € A). If x, is the equivalence class of x € E mod V,, then x, = ||x,|| = p.(x)
is a norm on F, generating a topology ¥, which is coarser than the topology
of the quotient space E/V,. If a < B, every equivalence class mod Vj, x,,
is contained in a unique equivalence class mod V,, x,, since V; < V,; the
mapping g4’ Xp — X, is linear, and continuous from (Fy, T;) onto (F,, T,),
since [|x, || < llxg]l.

Let us form the projective limit F = lim g,,F3(¥,). The mapping x — (x,)
of E into F is clearly linear, and one—tojale, since E is Hausdorff. We show
that this mapping is onto F. Let H be any non-empty finite subset of Aand let
z = (z,) be any fixed element of F. There exists x4 € E such that the equiva-
lence class of xy mod V, is z, for every a € H (if f € A is such that f =«
for all « € H, then any x € E with x; = z; will do). Now, if « € H; and « € H,,
then xy, — xy, € U, which shows the filter of sections of {xy}, where for each
finite H # & an xy4 has been selected as above, to be a Cauchy filter in E.
Since E is complete, {xy} has a limit y in E for which y, = z,(x € A), because
x —(x,) is clearly continuous. Moreover, x — (x,) is readily seen to be a
homeomorphism, and hence an isomorphism of E onto F. Now F is a dense
subspace (proof!) of the projective limit lim ga,,F , where F, (x e A) is the
completion of (F,, T,) and g, the continuous extension of Jap (@ = P) to F P)
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with values in F,. But F, being isomorphic with E, is complete, and hence
F= Lu_n g,,,F , which completes the proof of the theorem.

COROLLARY 1. Every Fréchet space is isomorphic with a projective limit of a
sequence of Banach spaces.

COROLLARY 2. Every locally convex space is isomorphic with a subspace of
a product of Banach spaces.

6. INDUCTIVE TOPOLOGIES

Let E and E, (« € A) be vector spaces over K, let g, be a linear mapping of
E, into E, and let I, be a locally convex topology on E, (x € A). The in-
ductive topology on E with respect to the family {(E,, T, g,): « € A} is the
finest locally convex topology for which each of the mappings g, (« € A) is
continuous on (E,, ¥,) into E.

To see that this topology is well defined, we note that the class  of l.c.
topologies on E for which all g, are continuous is not empty; the trivial
topology (whose only open sets are & and E) is a member of 7. Now the
upper bound T of 7 (in the lattice of topologies on E) is clearly a locally
convex topology for which all g, are continuous, and hence ¥ is the topology
whose existence was to be verified. (As an upper bound, ¥ is also a projective
topology, namely the projective topology with respect to the family 4~ and
the identity map on E.) T need not be separated, even if all T, are. (We leave
it to the reader to construct an example.) A 0-neighborhood base for ¥ is
given by the family {U} of all radial, convex, circled subsets of E such that for
each a € A, g '(U) is a 0-neighborhood in (E,, I,). If E is the linear hull of
U g.(E,), sucha base can be obtained by forming all sets of the form [ ,g,(U,),
where U, is any member of a 0-neighborhood base in (E,, T,).

6.1

A linear map v on a vector space E into a l.c.s. F is continuous for an in-
ductive topology on E if and only if each map v o g, (a € A) is continuous on
(E,, T, into F.

Proof. The condition is clearly necessary. Conversely, let each v og, be
continuous (x € A) and let W be a convex, circled 0-neighborhood in F. Then
Wog) Y(W) =g ' [v " (W)] is a neighborhood of 0 in E, (x € A), which
implies that v~ (W) is a neighborhood of 0 for the inductive topology on E.

We consider now the most important instances of inductive topologies:

Quotient Spaces. If E is a l.c.s. and M is a subspace of E, it is immediate
from the discussion in Chapter I, Section 2, that the topology of E/M is
locally convex. If T denotes the topology of E, the quotient topology is the
inductive topology with respect to the family {(E, I, ¢)}, where ¢ is the
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natural (or canonical) map of E onto E/M. By (I, 2.3) this topology is Haus-
dorff if and only if M is closed in E. The quotient topology can be generated
by a family of semi-norms derived from certain generating families of semi-
norms on E through a process analogous to that used in (2.3) (Exercise 8).

Locally Convex Direct Sums. If {E,: « € A} is a family of vector spaces over
K, the algebraic direct sum @,E, (Chapter I, Exercise 1) is defined to be the
subspace of [].E, for whose elements x all but a finite number of the pro-
jections x, = p,(x) are 0. Denote by g, (« € A) the injection map (or canonical
imbedding) E, — @ zE;. The locally convex direct sum of the family {E,(%,):
ae A} of l.c.s. is defined to be @,E, under the inductive topology with
respect to the family {(E,, T,, g,): « € A} and, when reference to the topologies
is desired, denoted by E(T) = @,E(T,). Since T is finer than the topology
induced on E by [[E.Z,), T is a Hausdorff topology and hence E(T) is a
l.c.s. From the remarks made above it follows that a 0-neighborhood base of
®.E(Z,) is provided by all sets of the form U = [ ,g,(U,); that is

U ={Y 404(x): 2 1Al S 1, X, € Up}, *)

where {U,: « € A} is any family of respective 0-neighborhoods in the spaces
E,. For simplicity of notation, we shall often write x, in place of g,(x,), thus
identifying E, with its canonical image g,(E,) in @zE;. (Note that each g, is
an isomorphism of E,(T,) into @ zEx(T,).)

6.2

The locally convex direct sum @ E, of a family of l.c.s. is complete if and only
if each summand E, is complete.

Proof. Let E = @®,E, be complete. Since each of the projections p, of E
onto E, is continuous, every summand E, is closed in E and hence is com-
plete.

Conversely, suppose that each E, is complete (x € A). Denote by I, the
unique translation-invariant topology on E for which a 0-neighborhood base
is given by the sets En V, where V =[]V, and V, is any O-neighborhood in
E,. Then ¥, is evidently coarser than the locally convex direct sum topology
T on E, and (E, I,) is a t.v.s. (Chapter I, Exercise 1) which is complete. (In
fact, the sets ¥ form a O-neighborhood base in F = [ [E, for a unique trans-
lation-invariant topology, under which F is easily seen to be a complete
topological group with respect to addition. If z € F is in the closure of E,
then for each V there exists x € E satisfying x — z € V; this implies z € E,
and hence E is a closed subgroup of F.) To prove that (E, ¥) is complete
it suffices, in view of (I, 1.6), to show that the T-closures U are ¥T,-closed,
where U = [ ,U, and U, is any convex, circled 0-neighborhood in E,. Let U
be given, and let ® be a I,-Cauchy filter on U with T,-limit x = (x,). Denote
by H the finite set of indices {o: x, # 0}, and write Ey = @{E,: « € H}
(setting Ey = {0} if H = (¥), and Ey = @{E;: f € A ~ H}; finally, let p be the
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projection E — Ey that vanishes on Eg. Clearly, p is T,-continuous and
T-continuous, and satisfies p(U) = U. Thus p(®) is a filter base on U n Ey
that I,-converges to x = p(x). Since, H being finite, the topologies ¥ and I,
agree on Ey, p(®) also T-converges to x; it follows that x € U, completing the
proof.

We remark that the locally convex sum of a finite family of l.c.s. is identical
with their product.

Example. Let E be a vector space over K and let {x,: « € A} be a basis
of E. Obviously E is isomorphic with the algebraic direct sum @,K,,
where K, = Ky(x € A) and K, is the one-dimensional vector space
associated with K. By (I, 3.4), the imbedding map on K, into E (K,
being endowed with the topology of K) is continuous for any topology
on E under which E is a t.v.s.; hence the locally convex direct sum
topology ¥ on E = @,K, is the finest locally convex topology on E. T is
consequently a Hausdorff topology under which E is complete; it is
generated by the family of all semi-norms on E. Equivalently, a 0-neigh-
borhood base in E(T) is formed by the family of all radial, convex,
circled subsets of E (hence T is sometimes called the convex core top-
ology). For further properties of this topology see Exercise 7.

6.3

A subset B of a locally convex direct sum @{E,: « € A} is bounded if and
only if there exists a finite subset H A such that p,(B) = {0} for o ¢ H, and
DP«(B) is bounded in E, if «. € H.

Proof. Let B be bounded in @,E,. Since, as we have noted above, the
projection p, of the direct sum onto the subspace E, is continuous, p,(B) is
bounded for all « € A by (I, 5.4). Suppose there is an infinite subset B = A
such that p,(B) # {0} whenever a € B; then B contains a sequence {a,} of
distinct indices. There exists a sequence {y™} = B such that y{” 5 0 for all
ne N.and hence, since E, is Hausdorff, such that y{ ¢ n¥,, where V, is a
suitable circled 0-neighborhood in E, . Now if U is a 0-neighborhood of type
(*) in @,E, such that U, =V, for all n, then n”'y™ ¢ U for any ne N,
which contradicts the boundedness of B by (I, 5.3). Conversely, it is clear
that the condition is sufficient for a set B to be bounded.

COROLLARY. The l.c. direct sum of a family of quasi-complete l.c.s. is quasi-
complete.

Inductive Limits. Let {E,: « € A} be a family of l.c.s. over K, where A is an
index set directed under a (reflexive, transitive, anti-symmetric) relation “ <’
and denote, whenever a £ B, by /4, a continuous linear map of E, into Ej.
Set F = ®,E, and denote (g, being the canonical imbedding of E, in F) by
H the subspace of F generated by the ranges of the linear maps g, — g ° /g,
of E, into F, where (o, f) runs through all pairs such that « < f. If the quotient
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space F/H is Hausdorff (equivalently, if H is closed in F), the l.c.s. F/H is
called the inductive limit of the family {Fo: « € A} with respect to the map-
pings h,, and is denoted by lim h,,E,. It appears to be unknown whether
H is necessarily closed in F.

The requirements for the construction of an inductive limit are often
realized in the following special form: {E,: « € A} is a family of subspaces of a
vector space E such that E, # E; for « # f, directed under inclusion and
satisfying E = | JE,; then A is directed under “« < B if E, = E;”. Moreover,
on each E, (x € A) a Hausdorff locally convex topology T, is given such that,
whenever a < f, the topology induced by I; on E, is coarser than I,. De-
noting by g,(x € A) the canonical imbedding of E, into E and by hg, the
canonical imbedding of E, into E; (« < p), and supposing that the inductive
topology ¥ on E with respect to the family {(E,, T,, g,): « € A} is Hausdorff,
it is easy to see that the inductive limit h_nl hg.E, exists and is isomorphic with

E(). In these circumstances, E(T) is called the inductive limit of the family
{E(Z,): a € A} of subspaces. An inductive limit of a family of subspaces is
strict if T, induces T, on E, whenever a < B.

Examples

1. The locally convex direct sum of a family {E,: « € A} of L.c.s. is
itself an example of an inductive limit. If {H} denotes the family of all
non-empty finite subsets of A, ordered by inclusion, Ey; = @ E, and

aeH
h, u the canonical imbedding of Ey; into E, when H = A, then @,E, =
_lir_r)x hp uEy.

2. Let R" (n € N fixed) be represented as the union of countably many
compact subsets G,,(m € N) such that G,, is contained in the interior of
G,.+1 for all m. The vector space 2(G,,) over C of all complex-valued
functions, infinitely differentiable on R" and supported by G,, is a
Fréchet-space under the topology of uniform convergence in all deriva-
tives; a generating family of semi-norms p,(k =0, 1, 2, ...) is given by

f— p(f) = sup| D¥|,

the sup being taken over all ¢ € R" and all derivatives of order k. If 2
denotes the vector space of all complex-valued infinitely differentiable
functions on R" whose support is compact (but arbitrarily variable with
f), then the inductive topology T on 2 with respect to the sequence
{2(G,,)} of subspaces is separated, for ¥ is finer than the topology of
uniform convergence on compact subsets of R", which is a Hausdorff
topology. Thus 2(2) is the strict inductive limit of a sequence of sub-
spaces; its dual 2’ is the space of complex distributions on R" (L.
Schwartz [1]).

3..Let X be a locally compact space and let E be the vector space of
all continuous, complex-valued functions on X with compact support.
For any fixed compact subset C = X, denote by (E¢, I¢) the Banach
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space of functions in E that are supported by C, with the uniform norm
generating T ¢. Ordering the family of compact subsets of X by inclusion
and denoting by g the canonical imbedding of E into E, the inductive
topology T on E is readily seen to be Hausdorff: ¥ is finer than the
topology of compact convergence. Hence E(T) is the inductive limit of
the subspaces (E¢, T¢); the dual E(T)’ is the space of complex Radon
measures on X (Bourbaki [9], chap. III).

The preceding definitions of inductive limit, and even of strict inductive
limit of a family of subspaces, are too general to ensure a great number of
interesting results (cf. Komura [1]). The situation is different for the strict
inductive limit of a sequence {E,: n € N} of subspaces of E, with N under its
natural order. We prove some of the most important results which are due to
Dieudonné and Schwartz [1], and Kothe [2].

The strict inductive limit of an increasing sequence of (B)-spaces will be
called an (LB)-space, and that of (F)-spaces an (LF)-space. Example 2 above is
an (LF)-space. Example 3 is an (LB)-space, provided the locally compact
space X is countable at infinity (i.e., a countable union of compact sub-
spaces).

6.4

If {E(X,): ne N} is an increasing sequence of l.c.s. such that the topology
X, .+, induces I, for all n and if the vector space E is the union of the subspaces
E, (ne N), then the inductive topology on E with respect to the canonical im-
beddings E, — E is separated and induces I, on E, (n € N).

The proof is based on this lemma:

LeMMA. If Eisal.c.s., M a subspace of E, and U a convex, circled 0-neighbor-
hood in M, there exists a convex, circled 0-neighborhood Vin EwithU = VN M.
If xo € E is not in M, then V can be chosen so that, in addition, xo, ¢ V.

Proof. Let W be a convex, circled 0-neighborhood in E such that W M < U.
Then V= (WuU) satisfies ¥n M =U. Obviously Uc ¥V nM; if
ze VN M, then z= Aw + pu, where we W, ue U, |A| + || =1, and Aw =
z — uue M implies either 1 =0 or we M; in both cases we have ze U,
whence ¥ n M < U. If x, is not in the closure M of M, then in the preceding
construction W can be so chosen that (x, + W)n M is empty, whence it
follows that x, ¢ V, for xo = Aw + uue ¥V would imply x, — Awe M and
Xxo — Aw € xy + W, which contradicts the choice of W.

Proof of (6.4). Let n be fixed and let ¥, be a convex, circled neighborhood
of 0 in E,(T,). Using the lemma above, we can by induction construct a
sequence {V,.J(k =1,2,...) of subsets of E such that V,,, is a convex,
circled 0O-neighborhood in E,., and V, 441 N E,p = Vy4y for all k2 0.
Clearly, V= {J V,4+ is a O-neighborhood for the inductive topology T on

k=20

E such that ¥V n E, = V,. It follows that the topology on E, induced by T is
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both finer and coarser than T, and hence is identical with &,,. Since E = | E,,
it is also clear that T is separated.

A similar construction enables us to determine all bounded subsets in
E(T) when EX) = ILIE E(Z,) is the strict inductive limit of a sequence of

subspaces.

6.5

Let E(X) = lln_m) E(Z,) and let E, be closed in E, . (T,.,) (ne N). A subset
B < E is bounded in E(X) if and only if for some n € N, B is a bounded subset
of E(T,).

Proof. By (6.4) the condition is clearly sufficient for B to be bounded.
Conversely, assume that B is bounded but not contained in E, for any n € N.
There exists an increasing sequence {k,, k,, ...} = N and a sequence {x,} = B
such that x,€ E, ., but x,¢ E, (neN). Using the lemma in (6.4), we
construct inductively a sequence {V } of convex, circled 0-neighborhoods in
E,, respectively, such thatn™'x, ¢ V, , and V, ., N E, =V, forallneN.

Again V = | ¥, is a O-neighborhood in E(T), but n™'x, ¢ V (n € N), which
n=1

is impossible by (I, 5.3); hence the assumption that B be not contained in any
E, is absurd.

6.6

The strict inductive limit of a sequence of complete locally convex spaces is
complete.

Proof. Let E(T) =lim E,(T,) be a strict inductive limit of complete l.c.s.
If & is a Cauchy ﬁlte?_)in E(T) and U is the neighborhood filter of 0, then
F+U={F+ U Fe g, UelU} is a Cauchy filter base in E(T) which con-
verges if and only if § converges. We show that there must exist an n, € N for
which the trace of § + U on E, is a filter base; if so, this trace converges in
E,(%,,), since E, is complete, and hence & converges in E. Otherwise, there
exists a sequence F, € § (n € N) and a decreasing sequence of convex, circled
0-neighborhoods W, in E(X) such that (F,+ W,) n E,= & for every n.

Now U = io_’ (W, n E,)is a0-neighborhood in E(T); we show that (F, + U) n
E,=@ for all n. Let yeE, n(F,+U); then y=z, + ¥ dx, where
A1, x;e W,nE;(i=1,...,p)and z, € F,, hence =

Y= Y Axi=z,4+ Y Ax.

i<n i>n

Since W; = W, fori > nand W, is circled and convex, the right-hand member
of the last equality is in F,, + W,, while the left-hand member is in E,, which
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is impossible; thus (F, + U) n E, = J for all n. Since & is a Cauchy filter,
there exists Fe & such that F— Fc U. Let we F, then we E, for some
keN.Letve Fyn F;thenw=v+ (w—v)ev + (F— F) c F; + U, which is
contradictory.

COROLLARY. Every space of type (LB) or (LF) is complete.

7. BARRELED SPACES

In this and the following section, we discuss the elementary properties of
two types of locally convex spaces that occur frequently in applications, and
whose importance is largely due to the fact that they include all Fréchet (and
hence Banach) spaces and that their defining properties are invariant under the
formation of inductive topologies.

A barrel (tonneau) in a t.v.s. E is a subset which is radial, convex, circled,
and closed. A l.c.s. E is barreled (tonnelé) if each barrel in E is a neighborhood
of 0. Equivalently, a barreled space is a l.c.s. in which the family of all
barrels forms a neighborhood base at 0 (or on which each semi-norm that is
semi-continuous from below, is continuous).

71
Every locally convex space which is a Baire space is barreled.
Proof. Let D be a barrel in E; since D is radial and circled, £ = () nD.

neN
Since E is a Baire space, there exists ny, € N such that ny D (which is closed)

has an interior point; hence D has an interior point y. Since D is circled,
—ye D; hence 0 = 4y + 3(—y) is interior to D by (1.1) because D is convex.

COROLLARY. Every Banach space and every Fréchet space is barreled.

The property of being barreled is, in general, not inherited by projective
topologies; for instance, there exist (non-complete) normed spaces which
are not barreled (Exercise 14), and even a closed subspace of a barreled space
is, in general, not barreled (Chapter IV, Exercise 10). The same is true for
projective limits (cf. (5.4)). However, it can be shown that the completion of
a barreled space is barreled (Exercise 15), and that the product of any family
of barreled spaces is barreled (Chapter 1V, Section 4). Moreover, any induc-
tive topology inherits this property. '

72

If T is the inductive topology on E with respect to a family of barreled spaces
(and corresponding linear maps), then each barrel in E is a 0-neighborhood for
<.

Proof. Let T be the inductive topology on E with respect to the family
{(E,, T,,g,): « € A}, where I, (x € A) is a barreled l.c. topology on E,. If D
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is a barrel in E(X), then g, (D) is a barrel D, in E(Z,) for each a € A, and
hence a neighborhood of 0; it follows that D is a 0-neighborhood in E(T).

COROLLARY 1. Every separated quotient of a barreled space is barreled; the
locally convex direct sum and the inductive limit of a family of barreled spaces
are barreled.

COROLLARY 2. Every space of type (LB) or (LF) is barreled.

Since a space of type (LF) (a strict inductive limit of a sequence of Fréchet
spaces) is not a Baire space, there exist barreled spaces which are not Baire
spaces. Examples of such spaces are given in Section 6.

8. BORNOLOGICAL SPACES

A locally convex space E is bornological if every circled, convex subset
A < E that absorbs every bounded set in E is a neighborhood of 0. Equiva-
lently, a bornological space is a l.c.s. on which each semi-norm that is
bounded on bounded sets, is continuous.

8.1
Every metrizable l.c.s. is bornological.

Proof. If E is metrizable, there exists a countable O-neighborhood base
{V, ne N} by (I, 6.1), which can be chosen to be decreasing. Let 4 be a
convex, circled subset of E that absorbs every bounded set; we must have
V, = nd for some ne N. For if this were false, there would exist elements
x, € V, such that x, ¢ n4 (n e N); since {x,} is a null sequence, it is bounded
by (I, 5.1), Corollary 2, and hence absorbed by A4, which is contradictory.

It can be shown (Chapter IV, Exercise 20, and K&the [5], §28.4) that a
closed subspace of a bornological space is not necessarily bornological. It is
not known whether every product of bornological spaces is bornological, but
the answer to this question depends only on the cardinality of the set of factor
spaces (Exercise 19). Thus since K5° is bornological, every countable product
of bornological spaces is bornological, more generally, the theorem of
Mackey-Ulam (Kothe [5], §28.8) asserts that every product of d bornological
spaces is bornological if d is smaller than the smallest strongly inaccessible
cardinal. (It is not known if strongly inaccessible cardinals exist; a cardinal d,
is called strongly inaccessible if (a) dy > N, (b) Y {d,: « € A} < d, whenever
card A < d, and d, < d, for all a € A (c) d < d,, implies 2 < d,. For details
on strongly inaccessible cardinals see, e.g., Gillman-Jerison [1].) In particular,
it follows from the Mackey-Ulam theorem that K¢ is bornological when
d =N or d = 2%, where N is the cardinality of the continuum.

We note from (8.1) that every Fréchet space (and hence every Banach
space) is bornological. Moreover, the property of being bornological is
preserved under the formation of inductive topologies.
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8.2

Let T be the inductive topology on E with respect to a family of bornological
spaces (and corresponding linear maps), each convex, circled subset of E ab-
sorbing all bounded sets in E(X) is a 0-neighborhood for .

Proof. Let A be such a subset of E and let T be the inductive topology with
respect to the family {(E,, T,, g,): « € A}. If B, is bounded in (E,, T,), then
9.(B,) is bounded in E(T) by (I, 5.4); hence A4 absorbs g,(B,), whence g; 1(4)
absorbs B,, and so g !(A4) is a 0-neighborhood in (E,, ¥,). Since this holds for
all x € A, A4 is a 0-neighborhood in E(T).

COROLLARY 1. Every separated quotient of a bornological space is borno-
logical; the locally convex direct sum and the inductive limit of any family of
bornological spaces is bornological.

In conjunction with (8.1) we obtain:
COROLLARY 2. Every space of type (LB) or (LF) is bornological.

Essentially by virtue of (I, 5.3), bornological spaces £ have the interesting
property that continuity of a linear map u into a l.c.s. F is equivalent to the
sequential continuity of u, which is in turn equivalent to u being bounded on
bounded sets. This latter property, stating that the continuous linear maps of
E into any l.c.s. are exactly those linear maps that preserve boundedness,
actually characterizes bornological spaces (see Exercise 18).

8.3

Let E(X) be bornological, let F be any l.c.s., and let u be a linear map on E
into F. These assertions are equivalent:

(a) u is continuous.
(b) {u(x,)} is a null sequence for every nuli sequence {x,} < E.
(¢) u(B) is bounded for every bounded subset B = E.

Proof. (a) = (b) is obvious. (b) = (c): If {u(x,)} (x,€ B, ne N) is any se-
quence of elements of u(B), then {4,x,} is a null sequence in E for every null
sequence of scalars 4, € K, by (I, 5.3); hence {4,u(x,)} is a null sequence in
F by (b), and repeated application of (I, 5.3) shows u(B) to be bounded in F.
(c)=>(a): If B is any bounded set in E, and V is a given convex, circled 0-
neighborhood in F, then V absorbs u(B); hence u~!(V) absorbs B. Since B
was arbitrary and E is bornological, u~!(V) is a 0-neighborhood for ¥.
This holds for any given ¥ which implies (since the topologies of E and F are
translation-invariant) the continuity of u.

Let £(%) be any l.c.s., B the family of all bounded subsets of E(Z). The
class J of separated l.c. topologies on E for each of which every BeB is
bounded is non-empty, since T € J . The upper bound ¥, of 7 (in the lattice
of topologies on E) is a projective topology (Section 5), and the finest l.c.
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topology on E whose family of bounded sets is identical with B. Clearly,
E(T,) is bornological; E(T,) is called the bornological space associated with
E(X). Thus E(T) is bornological if and only if T = T,,.

The bornological space E(T,) associated with E(T) can also be defined as
follows: Let B denote the family of all closed, convex, and circled bounded
subsets of E(T), ordered by inclusion. For a fixed B e B, consider the sub-

space Eg = |J nB of E; if pg denotes the gauge function* of Bin Eg, pyis a
neN

norm (since B is bounded and E(T) is Hausdorff) and (Ej, pg) is a normed
space whose topology is finer than the topology induced by T. (If B is com-
plete, it follows from (I, 1.6) that (Ej, pj) is a Banach space.) Let g 5 denote the
canonical imbedding of Ejp into E; it is evident that the inductive topology
on E with respect to the family {(Ep, pp, gp): BeB} is the bornological
topology ¥, associated with I. Hence:

8.4

Every bornological space E is the inductive limit of a family of normed
spaces (and of Banach spaces if E is quasi-complete); the cardinality of this
Sfamily can be chosen as the cardinality of any fundamental system of bounded
sets in E.

COROLLARY. Every quasi-complete bornological space is barreled.

This is immediate from (7.2), Corollary 1. Since there exist normed spaces
which are not barreled (Exercise 14), a bornological space is not necessarily
barreled; conversely, Nachbin [1] and Shirota [1] have given examples of
barreled spaces that are not bornological.

We conclude this section with a remark that refines the last corollary and
follows easily from the preceding discussion, and which will be needed later
on (Chapter III, Section 3).

8.5

Let E be any l.c.s. and let D be a barrel in E. Then D absorbs each bounded
subset B — E that is convex, circled, and complete.

Proof. (Ep, pp) is a Banach (hence barreled) space whose topology is finer
than the topology induced on Eg by E. Thus D n Ey is a barrel in (Ej, pp),
which implies that D absorbs B.

9. SEPARATION OF CONVEX SETS

Let E be a vector space over K and let H = {x: f(x) = o} be a real hyper-
plane in E; the four convex sets, F, ={x:f(x)<a}, F*={x:f(x) = a},
G, = {x: f(x) < a}, G* = {x: f(x) > a}, are called the semi-spaces determined

* For B= g, set Egp = {0} and pp = 0.
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by H. (Note that F* and F, are closed, G* and G, are open for the finest
locally convex topology on E.) If E'is a t.v.s. and H is a closed real hyperplane
in E (equivalently, f'is a continuous real linear form #0), then F* and F, are
called closed semi-spaces, and G* G, are called open semi-spaces. Two non-
empty subsets 4, B of E, are said to be separated (respectively, strictly
separated) by the real hyperplane H if either A = F, and B = F? or B = F, and
A < F* (respectively, if either A = G, and B < G* or B< G, and 4 = G%.
If A is a subset of the t.v.s. E, a closed real hyperplane H is called a supporting
hyperplane of A if A n H # & and if A4 is contained in one of the closed semi-
spaces determined by H.

Theorem (3.1) is a separation theorem; it asserts that every convex open
set A # & and affine subspace M, not intersecting A4, in a t.v.s. can be
separated by a closed real hyperplane. We derive from (3.1) two more
separation theorems (for the second of which it will be important that E is a
l.c.s.) that have become standard tools of the theory.

91

(FIRST SEPARATION THEOREM). Let A be a convex subset of a t.v.s. E, such
that A # & and let B be a non-empty convex subset of E not intersecting the
interior A of A. There exists a closed real hyperplane H separating A and B; if
A and B are both open, H separates A and B strictly.

Proof. A is convex by (1.2) and so is 4 — B, which is open and does not
contain 0, since A N B = . Hence by (3.1), there exists a closed real hyper-
plane H, containing the subspace {0}, H, = {x: f(x) = 0}, and disjoint from
A — B. Now f(A — B) is convex and hence is an interval in R and does not
contain 0; we have, after a change of sign in f if necessary, f(4 — B) > 0.
Thus if « = inf f(4), H = {x: f(x) = &} separates 4 and B: 4 =« F*, Bc F,.
Since Ac Aand 4 = (A) by (1.3), we have 4 = F? since F*is closed in E;
thus H separates A and B. If 4 and B are open sets, f(A4) and f(B) are open
intervals in R. For, f=g o ¢ where ¢ is the natural map of E, onto E,/H,,
which is open (E, denoting the underlying real space of E), and g is an
isomorphism of Ey/H, onto R, (Chapter I, Section 4). Hence 4 = G%, B = G,
in this case, so that H separates 4 and B strictly.

COROLLARY. Let C be a convex body in E. Every boundary point of C is
contained in at least one supporting hyperplane of C, and C is the intersection
of the closed semi-spaces which contain C and are determined by the supporting
hyperplanes of C.

Proof. To see that each boundary point x, of C is contained in at least one
supporting hyperplane, it will do to apply (9.1) with 4 = C, B = {x,}. To
prove the second assertion, we need the lemma that no supporting hyperplane
of C contains an interior point of C. Assuming this to be true, suppose that
y ¢ C; we have to show that there exists a closed semi-space containing C,
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but not containing y. Let x € C; the open segment joining x and y contains
exactly one boundary point x,. There exists a supporting hyperplane H
passing through x,; H does not contain y, or else H would contain x. It is
clear that one of the closed semi-spaces determined by H contains C but not y.
We prove the lemma:

LeMMA. If C is a convex body in a tw.s. E, no supporting hyperplane of C
contains an interior point of C.

Assume that x € H n €, where H = {x: f(x) = «} is a supporting hyper-
plane of C such that C < F,. There exists y € C with f(») < a, since H cannot
contain C. Now f[x + &(x — y)] > f(x) = a for every &> 0; since xe C,
x + &(x — y) € C for some ¢ > 0. This contradicts C = F,; hence the assump-
tion H n € # J is absurd.

9.2

(SECOND SEPARATION THEOREM). Let A, B be non-empty, disjoint convex
subsets of a l.c.s. such that A is closed and B is compact. There exists a closed
real hyperplane in E strictly separating A and B.

Proof. We shall show that there exists a convex, open 0-neighborhood V
in E such that the sets 4 + V and B + V are disjoint; since these are open,
convex subsets of E, the assertion will follow at once from (9.1).

It suffices to prove the existence of a convex, circled, open 0-neighborhood
W for which (4 + W) B = ; then V' = +W will satisfy the requirement
above. Denote by U the filter base of all open, convex, circled neighborhoods
of 0in E and assume that 4 + U intersects B for each U € U; then {(4 + U) n
B: Ue U} is a filter base in B which has a contact point x, € B, since B is
compact. Hence xo € A + U = 4 + 2U foreach U € U, whence xy € (\{4 + U:
UelU} = A4 = A, since 4 is closed; this is contradictory.

Since sets containing exactly one point are compact, we obtain

COROLLARY 1. Every non-empty closed, convex subset of a locally convex
space is the intersection of all closed semi-spaces containing it.

This implies a very important property of convex sets in locally convex
spaces :

COROLLARY 2. In every l.c.s. E(X), the T-closure and the weak (that is,
o(E, E')-) closure of any convex set are identical.

Proof. Since T is finer than o(E, E’), every o(E, E')-closed subset of E is
T-closed. Conversely, every convex, T-closed subset of E is weakly closed,
since it is the intersection of a family of semi-spaces F, = {x: f(x) < a}, and
each F, is weakly closed.

For non-convex sets in an infinite-dimensional l.c.s., the weak closure is,
in general, larger than the I-closure (Exercise 22).
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10. COMPACT CONVEX SETS

For compact, convex subsets of a locally convex space, a number of strong
separation results can be established that will lead to the theorem of Krein-
Milman. The theorem asserts that each compact, non-empty convex set
contains extreme points (for the definition, see below) and is, in fact, the
convex closure of its set of extreme points. We begin with a sharpening of
Corollary 1 of (9.2); our proofs follow Bourbaki [7].

101

If C is a non-empty, compact, convex subset of a l.c.s. E, then for each closed
real hyperplane H in E there exist at least one and, at most, two supporting
hyperplanes of C parallel to H. Moreover, C is the intersection of the closed
semi-spaces that contain C and are determined by its hyperplanes of support.

Proof. Let H = {x: f(x) = 7y} be any closed real hyperplane in E. Since the
restriction of fto C is a continuous real-valued function, there exist points
Xxo € C and x; € C such that f(x,) = a = inf f(C) and f(x;) = f = sup f(C).
It is clear that H, = {x: f(x) = a} and H; = {x: f(x) = i} are (not necessarily
distinct) supporting hyperplanes of C, and that there exist no further support-
ing hyperplanes parallel to H. To prove the second assertion, let y ¢ C; by
(9.2), there exists a closed real hyperplane H strictly separating {y} and C.
Evidently there exists a hyperplane H, parallel to H and supporting C, and
such that y is contained in that open semi-space determined by H; which
does not intersect C.

COROLLARY. If E is a l.c.s., Eg is the space of all continuous real linear forms
on E, and C is a compact, convex subset of E, then

C=N{/T'[A(O]:f € Eg}.
10.2

The convex hull of a finite family of compact, convex subsets of a Hausdorff
t.v.s. is compact.

Proof. In fact, if 4; (i =1, ..., n) are non-empty convex subsets of E, it is
readily verified that their convex hullis 4 = { ) da;:a,€ A4, 2,20, Y, ;=1
i=1 i=

=1
(i=1,...,n)}. Thusif P = R"is the compact set {(4,, ..., 4,): 4, 2 0, >4, = 1},
A is the continuous image of the set P x [[;4; = R" x E"; hence A is compact
ifeach 4;is (i=1, ..., n).

We need now a generalization of the concept of a supporting hyperplane
for convex sets. If A4 is a convex subset of a l.c.s. E, a closed, real linear
manifold is said to support 4 if M n A # &, and if every closed segment
S < A belongs to M whenever the corresponding open segment S, intersects
M. In other words, M supports 4 if S< 4 and S, N M # & together imply
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S © M, supposing in addition that M N 4 # &. An extreme point of A4 is a
point x, € 4 such that {x,} supports 4.

Examples. Every vertex of a convex polyhedron 4 in R? is an extreme
point of A4; every straight line containing an edge of A4 is a supporting
manifold; every plane containing a face of A4 is a supporting hyperplane.
For an infinite-dimensional example of extreme points, see Exercise 29.

The following theorem, asserting the existence of an extreme point in every
hyperplane supporting a compact, convex set, is the final step toward the
Krein-Milman theorem :

10.3

If C is a compact, convex subset of a locally convex space, every closed real
hyperplane supporting C contains at least one extreme point of C.

Proof. Let H be a closed real hyperplane supporting C and denote by M
the family of all closed real linear manifolds contained in H and supporting
C. M is inductively ordered under downward inclusion > ; for, if {M,: « € A}
is a totally ordered subfamily, then M = (), M, will be its lower bound in I,
provided that M n C # J. But the family {M, n C: a € A}, again totally
ordered under o, is a filter base consisting of closed subsets of C; since C
is compact, it follows that M n C=(N,M,) N C= (M, C) is not
empty. Hence by Zorn’s lemma, there exists a minimal element M, e M.
If My, = {x,}, then x, is an extreme point of C contained in H; we shall
show that the assumption dim M, = 1 contradicts the minimality of M,.
Now C, = C n M, is a compact, convex subset of the affine subspace M,
and if the dimension of M, is =1, (10.1) implies that there exists a closed
hyperplane M, in M, such that M, supports C,. We claim that M, € I, for
if S is a closed segment, S < C, and the corresponding open segment S,
intersects M, then S, intersects M, and hence we have S = M, which, in
turn, implies S = C, and therefore S = M,. Thus M, € M, which contradicts
the minimality of M, in 9.

10.4

Theorem. (Krein-Milman). Every compact, convex subset of a locally
convex space is the closed, convex hull of its set of extreme points.

Proof. If C # & is convex and compact and B is the closed, convex hull
of the set of extreme points of C, then clearly B = C. On the other hand,
if f# 0 is a continuous real linear form on E and f(C) = [«, #] there exist,
by (10.3), extreme points of C in the supporting hyperplanes f ~*(«) and f ~1(B),
whence it follows that f(C) = f(B). Thus f~[f(C)] =f~'[f(B)] for each
S € Eg, which implies C = B by the corollary of (10.1).

The following supplement of (10.4) is due to Milman [1].
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10.5

If A is a compact subset of a locally convex space such that the closed, convex
hull C of A is compact, then each extreme point of C is an element of A.

Proof. Let x, be an extreme point of C, and ¥ any closed convex 0-neighbor-
hood. There exist points y;€ 4 (i = 1, ..., n), with 4 = J,(y; + V). Denote by
W the closed, convex hull of A N (y; + V). Since W; (which are subsets of C)
are compact, by (10.2) so is the convex hull of their union which is, therefore,

1dent1cal with C. Hence x, = Z Aw;, where w,;e W;, 1,20 (i= )

and Z A; = 1. x, being an extreme point of C, it follows that x, = w; for
i=1

some i; hence x, € W, < y; + V, and since y; € 4, it follows that x, € 4 + V.
Since V is an arbitrary member of a 0-neighborhood base and A4 is closed,
it follows that x, € 4.

COROLLARY. If C is a compact, convex subset of a l.c.s. and & is the set of ity
extreme points, then & is the minimal closed subset of C whose convex closure
equals C.

However, in general, & is dense in C (Exercise 29).

EXERCISES

1. Let E be a vector space and let A # J be a subset of E. The convex
hull (the convex, circled hull) of 4 consists of all finite sums i Aix; such
that x;€ 4, 4; 20 and li A;=1 (such that él}ti[ <1); tlhe convex,

circled hull T4 is the convex hull of the circled hull of 4. If E is a
t.v.s., the convex hull of an open subset is open, and the closed, convex,
circled hull of 4 is the closure of ["4.

2. A real-valued function ¢ on a convex subset of a vector space E
is convex if A, x>0 and A+ p =1 imply that ¢(ix + wy) < 1d(x) +
uod(y). If E is a t.v.s. and ¢ is a convex function on E, show that these
assertions are equivalent:

(a) ¢ is continuous on E.

(b) ¢ is upper semi-continuous on E.

(c) There exists a non-empty, convex, open subset of E on which
¢ is bounded above.

Deduce from this that there exists a continuous linear form f# 0
on E if and only if there exists a non-constant convex function on E
which is upper semi-continuous. (Use the corollary of (3.1).)

3. Show that each convex, radial subset of a finite-dimensional vector
space E is a 0-neighborhood for the unique separated topology on E
under which E is a t.v.s. (Chapter I, Section 3).

4. A real-valued function ¥ on a vector space E is sublinear if it is
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convex and positive homogeneous (i.e., if Y(Ax) = AY(x) for all x € E
and all 1 = 0).

(a) Every sublinear function on R" is continuous; examples are
x—supx; x— [3|x|1 (g=1)(E=1,...,n). (Use Exercises 2, 3.)

(b) If ¥ is a sublinear function on R” such that Y(x,,...,x,) =0
whenever x; 20 (i =1, ..., n) and Y(x,, ..., x,) £ 0 if all x; <0, and if
p; are continuous semi-norms on a t.v.s. E, then y(py, ..., p,) is a con-
tinuous semi-norm on E.

(c) Assume that y is a sublinear function on R", as in (b), having the
additional property that x; =20 (i=1,...,n) and ¥(xy,...,x,)=0
imply x; =0 (i =1, ..., n). Show that if (£}, p;) are n normed spaces,
then (x,, ..., x,) = ¥[p.(x}), ..., Ps(x,)] is @ norm on [];E; generating
the product topology.

5. Let L be a vector space over a complete, non-discrete valuated
field K (not necessarily R or C), and call (L, p) a normed space over K
if p satisfies conditions (i) through (iii) of Section 2. Find out to what
extent the results of Section 2 can be carried over to this more general
case. Show that the topologies generated on L by two such norms p,, p,
are identical if and only if there exist constants ¢, C >0 such that
cp1(x) £ po(x) £ Cpy(x) for all x e L.

6. Let E be a vector space over R, let M be a subspace of E, and let
g be a linear form on M such that g(x) < p(x) (x € M), where p is a
sublinear function on E. There exists a linear form f on E extending g
and such that f(x) < p(x) for all x € E. (Observe that the linear forms
on E x Rarethe maps(x, t) —» h(x) + at withh € E* and « € R. Consider
the linear manifold Hy, = {(x, t): g(x) — t =1} and the convex cone
C = {(x,1): p(x) £t} in E x R, and prove the existence of a hyperplane
Hc E x R such that H> Hy, and Hn C= . Cf. proof of (3.2).)
Show that this form of the Hahn-Banach theorem, (3.1), and (3.2) imply
each other.

7. Denote by E an infinite-dimensional vector space and by ¥ the
finest locally convex topology on E (Example following (6.2)). Show
that E(T) is a l.c.s. having these properties:

(a) Every linear map u on E(T) into any l.c.s. F is continuous; hence
E(X) = E*, every subspace is closed, and every algebraic direct sum
decomposition of E is topological.

(b) A subset B < E is bounded if and only if it is contained in a
finite-dimensional subspace and bounded there; a subset of E is sequen-
tially closed if and only if its intersection with each finite-dimensional
subspace is closed.

(c) If E has a countable basis, a convex subset of E is closed if (and
only if) its intersection with each finite-dimensional subspace is closed.

(d) E(R) is complete and not metrizable.

Show also that the property of carrying the finest locally convex top-
ology is inherited by quotients, by inductive limits and by subspaces, but
not by infinite products.

8. A family P of semi-norms on a vector space E is directed if it is
directed for the usual order <, defined by “ p(x) < g(x) forall x € E”.
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(a) Let P be a family of semi-norms on E, and let U,, = {x: p(x)
<n~'}forp e P,neN.For{U,,: p € P, n € N} to be a 0-neighborhood
base of a locally convex topology on E, it is necessary and sufficient that
the family {cp: ¢ > 0, p € P} of semi-norms be directed.

(b) If P, is a family of semi-norms generating the topology of the
l.c.s. E, the family P of the suprema of non-empty finite subsets of P,
is directed and generates the topology of E.

(c) Let M be a subspace of E. For a given semi-norm p on E, define
P(X) = inf{p(x): x € £}(% € E/M); p is a semi-norm on E/M. If P is a
directed family of semi-norms on E, the family {p: p € P} generates on
E/M the quotient of the topology generated by the family P.

9. Let E(¥) = 1_151 9asE5(T) be the projective limit of a family of 1.c.s.
and suppose that g,, = g, © g5, Whenever a < g <. Prove that E(T)
is isomorphic with lim g; ,E(T,) (6, ¢ € B) if B is a cofinal subset of A.

A corresponding result holds for inductive limits if hy, = hyg © hg, when-
evera < f < 7.

10. If E(T) = lim g,,,E,(T,) is the projective limit of a sequence of
l.c.s. such that g::= Gmn © Gnp and E, = g,,,(E,) whenever m < n < p,
then £,(E) = E, (£, denoting the projection of [ ], E, onto E,). The result
carries over to projective limits of countable families (use Exercise 9).

11. The l.c. direct sum of an infinite family of locally convex spaces,
each not reduced to {0}, is not metrizable. (Consider the completion of
the l.c. direct sum of a countable subfamily and use Baire’s theorem.)

12. Show that if E(X) is the locally convex direct sum of a denum-
erable family of l.c.s., T is identical with the topology defined in Chap-
ter I, Exercise 1.

13. If E is a metrizable l.c.s. which possesses a countable fundamental
system of bounded sets, then E is normable. (Observe that the com-
pletion of E is the union of countably many bounded subsets.) Give an
example of a non-metrizable l.c.s. that possesses a countable fundamen-
tal system of bounded sets. (Use (6.3).)

14. Let E be the vector space over R of all continuous real-valued
functions f on [0, 1] that vanish in a neighborhood (depending on f)
of ¢ = 0, under the uniform topology. Show that D = {fin|f(n"!)| £ 1,
n € N} is a barrel in E but not a neighborhood of 0, thus exhibiting a
normable (hence bornological) space which is not barreled.

15. Let E be a l.c.s., E its completion. (a) If E is barreled, £ is bar-
reled; (b) if E is bornological, £ is barreled. (For (b), use (8.5).)

16. Prove the following generalization of (8.1): Let L be a met-
rizable t.v.s. over a non-discrete, valuated field X (not necessarily R or
C); each circled subset of L that absorbs every null sequence in L is a
neighborhood of 0.

17. Let E, F be l.c.s., where E is bornological, and let u be a linear
map of E into F. If for each null sequence {x,} < E, the sequence {u(x,)}
is bounded in F, then lim x, = 0 implies lim u(x,) = 0. Use this result to
derive a more general form of (8.3).

18. A l.c.s. E is bornological if and only if every linear map u on E
into any Banach space F such that u carries bounded sets onto bounded
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sets is continuous. (To establish the sufficiency of the condition, consider
the bornological space E, associated with E, and show that the identity
map of E onto E, is continuous by using (5.2) and (5.4), Corollary 2.)

19. Let {E,: o € A} be a family of l.c.s. over K.

(a) Assume that K% is bornological. If # is a linear map on E = [[E,
into a l.c.s. F such that u carries bounded sets onto bounded sets and the
restriction of u to each of the subspaces E, = {x € E: x; = 0 for f # o}
of E(a € A) vanishes, then u = 0. (Consider the restriction of u to the
bornological space [],Kx, for each x = (x,) € E, and use (8.3).)

(b) Let F be a Banach space and let # be a linear map of E = [[,E,
into F transforming bounded sets into bounded sets. Show that # must
vanish on all but a finite number of the subspaces E,.

(c) Using (a) and (b), show that if K3 is bornological and u is a linear
map on [],E, into a Banach space F such that ¥ maps bounded sets onto
bounded sets, there exists a finite subset H — A such that [[,E, = H E,,
@ G and u(G) = {0}.

(d) Using (c) and Exercise 18, show that [],E, is bornologlcal if E,
(¢ € A) and K§ are bornological. Deduce from this that the product of
a countable number of bornological spaces is bornological.

(e) If TI,E, is bornological, then [T Ez = G is bornological for any

BeB
subset B = A. (Observe that G is isomorphic with a quotient space of
[.E..)

20. Let E be a vector space and let A and B be non-empty convex
subsets of E such that A N B= & and A4 has a core point x, (i.e., a
point x, such that 4 — x, is radial). There exists a real hyperplane in E
separating 4 and B. (Note that a core point of 4 is an interior point of 4
for the finest locally convex topology on E.)

21. Let 4, B be non-empty, non-intersecting, convex subsets of a
vector space E. Show that there exist convex subsets C, D of E such that
AcC,BcD,Cn D= and Cu D= E. (Use Zorn’s lemma.)

22. Let E = [, the Hilbert space of square summable sequences
x = (xy, X, ...) With ||x|| = (X|x,|?)*. Show that the weak closure of the

sphere S = {x: ||x|| = 1}, whichisclosedin E,istheball B = {x: ||x|| £ 1}.

23. Show that in a finite-dimensional l.c.s., each pair of non-empty,
non-intersecting, closed, convex subsets is separated by a real hyper-
plane. (Represent one of the sets as the union of an increasing sequence
of compact convex subsets.) Show by an example in R2 that in this re-
sult, “separated” cannot be replaced by strictly separated .

24. Let E be al.c.s and let C be a closed, convex cone of vertex 0 in
E such that C # E.. Show that C is the intersection of the closed semi-
spaces containing it and determined by the supporting hyperplanes of C.

25. Let E be a l.c.s. over R, let C be a convex cone of vertex 0 in E,
and let C’ be the subset of the dual E’ whose elements are non-negative
on C. C' is a convex cone (of vertex 0) in E’ which separates points in E
if and only if C n (- C) = {0}.

26. Show that in a finite-dimensional 1.c.s. the convex hull of a com-
pact set is compact.

71
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27. By establishing the following propositions show that in an infinite-
dimensional l.c.s., the convex hull of a compact subset is not neces-
sarily closed, and the closed, convex hull of a compact subset is not
necessarily compact.

(a) Denote by X the family of all real-valued continuous functions
on the unit interval [0, 1] and by E the product space RY; E is a l.c.s.
For each fixed ¢ € [0, 1], let ¢, € E be the “evaluation map” f— f(¢).
The set K, = {¢,: ¢ € [0, 1]} is compact in E.

(b) The element ¢ € E given by the Riemann integral f— f; f@adt

is in the closure of the convex hull C of K, but ¢ ¢ C; hence C is not
closed in E.

(c) Denote by F the smallest subspace of E that contains K;; C is
closed in F and hence is the closed, convex hull of K, in F, but is
not compact.

28. Let E be the Banach space of real null sequences x = (x;, X, «-+)
with |x|| = sup,|x,|.- The unit ball B= {x: ||x|| <1} in E is closed and
convex, but has no extreme points.

29. Let E be the Hilbert space /2 over R. Denote by C the subset of

E determined by Z (2"x,)> < 1. Then C is a convex and compact set,

and the closure of 1ts subset & of extreme points. (Let E, be the sub-
space of E determined by x, = 0 for k > n; the boundary points of the
ellipsoid C n E, form a set &, consisting entirely of extreme points

o]
of C. Show that |J &, is dense in C. The example is due to Poulsen [1].)
=1

30. A convex cone C of vertex 0 in a l.c.s. E has compact base if there
exists a real affine subspace N of E, 0 ¢ N, such that N n C is compact,
non-empty, and C is the smallest cone of vertex 0 containing N n C.
A ray R= {Axy: A =0}, 0% x, € C, is extreme if xe R, y e C, and
x —y € C imply y € R. Show that a convex cone with compact base is
closed, satisfies C n — C ={0}, and is the closed, convex hull of the set of
its extreme rays. (For more general results\in this direction, see Klee [5].)



Chapter il
LINEAR MAPPINGS

The notion of linear mapping has been used frequently before and is
obviously indispensable for any discussion of topological vector spaces. But
the accent in this chapter is on vector spaces whose elements are vector-
valued functions, especially linear mappings. The study of such spaces and
their topologies forms the. natural background for much of what follows in
this book, in particular, duality (Chapter I'V) and spectral theory (Appendix);
it also leads, via spaces of bilinear maps and topological tensor products, to
the important class of nuclear spaces.

The first two sections, concerned with topological homomorphisms,
Banach’s classical theorem and its close relative, the closed graph theorem,
appear to be somewhat isolated from the general theory; however, it will
become evident in Chapter IV (Section 8) that for locally convex spaces,
these results find their proper place in the general framework of duality.
Revealing an intimate relationship with the concept of completeness, this
deeper analysis will eliminate the dominating role of category in the proofs
of these theorems and lead to what is probably the natural bound of their
validity. Thus from a purely esthetical point of view, one is tempted to defer
the discussion of the homomorphism and closed graph theorems until the
tool of duality is fully available. For the benefit of the reader who is interested
in a quick approach, we give the classical versions with their direct proofs
here. The other fact in favor of an independent treatment (namely, the fact
that the classical proofs can dispense with local convexity) is of little practical
importance. Section 3 discusses topologizing spaces of vector-valued func-
tions, boundedness, and the most frequent types of S-topologies. The section
on equicontinuity that follows is fundamental; here also the celebrated prin-
ciple of uniform boundedness and the Banach-Steinhaus theorem have their
natural places. Spaces of bilinear mappings and forms (Section 5) are not
only an interesting class of vector-valued function spaces but furnish the
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background of the theory of topological tensor products of which the ele-
ments are presented in Section 6 (barring the use of duality). This, in turn,
leads naturally to nuclear mappings and spaces, an important class of locally
convex spaces that are beyond the reach of Banach space theory. The com-
paratively recent results in this area are practically all due to Grothendieck
[13]; it is perhaps of interest to the expert how many of the basic results on
these spaces can be obtained without the use of duality or abstract measure
theory. The final section discusses the approximation problem, with some
emphasis on Banach spaces, and briefly the basis problem. It becomes ap-
parent here that duality is hardly dispensable, but the results on strong
duals and adjoints in (B)-spaces used here are elementary, so we have decided
to place this discussion before Chapter IV despite some technical inconve-
niences.

1. CONTINUOUS LINEAR MAPS AND TOPOLOGICAL HOMOMORPHISMS

If L and M are t.v.s. over K and u is a linear map (an algebraic homo-
morphism) of L into M, then u is continuous if and only if # is continuous at
0 e L; for if Vis a given O-neighborhood in M, and U is a 0-neighborhood in
L such that w(U) < ¥V, then x — y € U implies u(x — y) = u(x) — u(y) € V.
Hence if u is continuous at 0, it is even uniformly continuous on L into M for
the respective uniformities (Chapter I, Section 1). Thus if « is continuous on L
into M with M separated and complete, then # has a unique continuous
extension i, with values in M, to any t.v.s. L of which L is a dense subspace
(in particular, to the completion L of L if L is separated); it is easy to see that
# is linear. We supplement these simple facts by a statement in terms of semi-
norms.

11

Let the topologies of L and M be locally convex and let ? be a family of
semi-norms generating the topology of L. A linear map u of L into M is con-
tinuous if and only if for each continuous semi-norm q on M, there exists a
finite subset {p;:i=1, ...,n} of ? and a number ¢ >0 such that qlu(x)] <
¢ sup; pix) for all x € L.

Proof. The condition is necessary. Let ¥ be the 0-neighborhood {y: g(»)
< 1}, where ¢ is a given continuous semi-norm on M. Since u is continuous
and 2 generates the topology of L (Chapter II, Section 4), there exist 0-
neighborhoods U; = {x: p(x) < ¢;} (,>0, p;e?; i=1,...,n) such that
u(N;U,) = V. Hence, letting ¢ = min; ¢;, the relation sup; p;(x) < ¢ implies
u(x) € V; thus qu(x)] £ 1. Clearly, then, g[u(x)] <& !sup;pi(x) for all
xelL.

The condition is sufficient. If ¥ is a given convex circled 0-neighborhood
in M, its gauge function ¢ is a continuous semi-norm on M. Thus if glu(x)] <
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c sup; p(x), where c > 0-and p; € 2 (i = 1, ..., n), it follows that w(U) = V for
the 0-neighborhood U = {x: ¢cpi(x) £ 1,i=1,...,n} in L.

COROLLARY. If u is a linear map on a normed space (L, || |) into a normed
space (M, || ), u is continuous if and only if ||u(x)| < c||x|| for some ¢ > 0 and
all x e L.

A continuous linear map on L into M, where L and M are t.v.s. over K, is
called a topological homomorphism (or, briefly, homomorphism when no
confusion is likely to occur) if for each open subset G = L, the image u(G) is
an open subset of u(L) (for the topology induced by M). Examples of topo-
logical homomorphisms are, for any subspaces H and N of L, the canonical
(quotient) map ¢: L — L/N and the canonical imbedding y: H — L. With the
aid of these two mappings, every linear map u of L into M can be * canon-
ically” decomposed :

L;»L/N;;u(L)—';M.

Here N = u~%(0) is the null space of u, and u, is the algebraic isomorphism
which maps each equivalence class £ of L mod N onto the common image
u(x) (x € X) of this class under u. Hence u =y o u; o ¢, and we call the bi-
jective map u, associated with u. We leave it to the reader to verify that u is
an open map if and only if u, is open and that u is a continuous map if and
only if u, is continuous.

1.2

Let L and M be t.v.s. and let u be a linear map of L into M. These assertions
are equivalent:

(a) u is a topological homomorphism.
(b) For every neighborhood base W of 0 in L, uw(N) is a neighborhood base
of 0 in u(L).

(c) The map u, associated with u is an isomorphism.

Proof. (a) = (b): Since u is open, every element of u() is a 0-neighborhood,
and u() is a base at 0 € u(L), since u is continuous. (b) = (c): Since ¢(U) is a
0-neighborhood base in L/N, N = u~*(0), for any 0-neighborhood base in L,
u, has property(b)and isconsequently anisomorphism. (c) = (a): Since ¢, uq, ¥
are all continuous and open, so is u = ¥ o u, o ¢, and hence is a topological
homomorphism.

1.3

Let u be a linear map on L whose range is a finite-dimensional Hausdorff t.v.s.
These assertions are equivalent.

(a) u is continuous.
(b) u~Y(0) is closed in L.
(¢) u is a topological homomorphism.
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Proof. (a)=(b): Since u(L) is Hausdorff, {0} is closed and thus x~*(0)
is closed if u is continuous. (b) = (c): If #~*(0) is closed, L/u~*(0) is a Haus-
dorff t.v.s. of finite dimension, whence by (I, 3.4), 4, is an isomorphism;
it follows from (1.2) that u is a topological homomorphism. (c) = (a) is clear.

COROLLARY. Every continuous linear form on a tw.s. L is a topological
homomorphism.

This fact has been used implicitly in the proof of (II, 9.1).

2. BANACH’S HOMOMORPHISM THEOREM

It follows from (1.3) that every continuous linear map with finite-dimen-
sional separated range is a topological homomorphism; the question arises
for what, if any, larger class of t.v.s. it is true that a continuous linear mapping
is automatically open (hence a homomorphism). We shall see that this holds
for all mappings of one Fréchet space onto another, and in certain more
general cases. For a deeper study of this subject, the reader is referred to
Chapter 1V, Section 8. We first prove a classical result of Banach ([1], chap.
I11, theor. 3) for which we need the following lemma:

Let L, M be metric t.v.s. whose respective metrics d, é are given by pseudo-
norms (Chapter I, Section 6): d(x,, x,) = |x; — x,| and é(y,, y,) = |[y1 — V,l-
We denote by S, = {xeL:|x|<r} and S, = {y € M: |y| £ p}, respectively,
the closed balls of center 0 and radius 7, p.

LeEMMA. Let L be complete and let u be a continuous linear map of L into
M satisfying
(P): For every r > 0, there exists p = p(r) > 0 such that u(_S,—) o8,
Then u(S,) > S, for each t > r.
Proof. Let r and ¢, t > r > 0 be fixed and denote by {r,} a sequence of

positive real numbers such that 7, = rand ) r, = t. Let {p,} be a null sequence
1

of numbers > 0 such that p, = p and for each n € N, p, satisfies u(S,) > S,,,.
For each y € §,, we must establish the existence of z € S, with u(z) = y.
We define inductively a sequence {x,: n =0, 1, ...} such that foralln > 1:

(1) lxn - xn—l' é Ty
(ll) lu(xn) - yl é Pn+1-

Set x, =0 and assume that x;, x,, ..., X,—; have been selected to satisfy
() and (ii) (k = 1). By property (P), the set u(x,_; + S,,) is dense with respect
to u(x,—;) + S,,. From (ii) we conclude that y € u(x;_,) + S,,; thus there
exists x; satisfying |x;, — x| < r, and |u(x) — y| £ Prs1.

0

Since ) r, converges, {x,} is a Cauchy sequence in the complete space Land
1
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thus converges to some z € L. Clearly, |z| < ¢, and u(z) = y follows from the
continuity of u and (ii), since {p,} was chosen to be a null sequence.

Let us point out that the results and, up to minor modifications, the proofs
of this section, with the exception of (2.2), are valid for topological vector
spaces L over an arbitrary, non-discrete valuated field K (Chapter I). Also the
following remark may not be amiss. A Baire space is, by definition, a topo-
logical space in which every non-empty open subset is not meager. This
implies that every t.v.s. L over K which is non-meager (of second category)
in itself, is a Baire space. Otherwise, there would exist a meager, non-empty,
open subset of L, and hence a meager 0-neighborhood U. Since L is a count-
able union of homothetic images of U (hence of meager subsets), we arrive at
a contradiction.

21

Theorem. Let L, M be complete, metrizable t.v.s. and let u be a con-
tinuous linear map of L with range dense in M. Then either u(L) is meager (of
first category) in M, or else u(L) = M and u is a topological homomorphism.

Proof. Suppose that u(L) is not meager in M. As in the preceding lemma, we
can assume the topologies of L and M to be generated by pseudonorms by
(I, 6.1), and we continue to use the notation of the lemma. The family
{S,: r > 0} is a O-neighborhood base in L. For fixed 7, let U= S,, V' =S,,;

(=]

then V+ V < U and u(L) = \J nu(V), since V is radial. Let us denote the
1

closure of a set 4 in u(L) by [A] . Since, by assumption, #(L) is a Baire space,
there exists » € N such that [nu(¥)]™ has an interior point; hence [#(¥)]™ has
an interior point by (I, 1.1). Now

[(M]™ + [(N]” = [w(V) + u(V)]” = [wV + V)]” = [WU)]";

thus [w(IV)]” is a O-neighborhood in u(L), since 0 is interior to
[u(V)]™ + [«(¥)]™. Hence there exists p > 0 such that u(L) n S, = [w(U)] ",
and the lemma above implies that u(L) N S, = u(S,.,) for every ¢ > 0. Thus
{u(S,): t > 0} is a neighborhood base of 0 in w(L), whence by (1.2), u is a
topological homomorphism. Therefore u, is an isomorphism of the space
L/u~'(0) which is complete by (I, 6.3), onto u(L), whence it follows that
u(ll)= M.

COROLLARY 1. A continuous linear map u of a complete, metrizable t.v.s. L
into another such space, M, is a topological homomorphism if and only if u(L)
is closed in M.

Proof. The necessity of the condition is immediate, since u(L), being iso-
morphic with L/u~*(0), is complete and hence closed in M. Conversely, if
u(L) is closed in M, then it is complete and metrizable and hence can replace
M in (2.1).
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COROLLARY 2. Let L be a complete, metrizable t.v.s. for both of the top-
ologies X, and X ,, and suppose that I, is finer than T,. Then I, and T, are
identical.

This is immediate from Corollary 1, since the identity map is continuous
from (L, ¥,) onto (L, T,).

COROLLARY 3. If a complete, metrizable t.v.s. L is the direct algebraic sum
of two closed subspaces M and N, the sum is topological: L = M @ N.

Proof. Since M and N are complete and metrizable, so is M x N; whence
it follows that the continuous mapping (x;, x,) = x; + x, of M x N onto L
is an isomorphism (Chapter I, Section 2).

With our present tools, we can extend Corollary 1 somewhat beyond the
metrizable case. The following extension is due to Dieudonné-Schwartz [1].

22

Let E be a locally convex space of type (LF) and let F be a locally convex
space of type (F) or (LF). Every continuous linear map u of E onto F is a topo-
logical homomorphism.

Proof. Let E=1im E, be an (LF)-space and let F=lim F, be an (LF)-
space; the case where F is a Fréchet space can be formaleubsumed under
the following proof by letting F, = F (n € N). For all m,n e N, set G, , =
E, nu~!(F,); as a closed subspace of E,, G, , is complete and metrizable.
Since u(E)=F and w(G,,) = u(E,) N F, it follows that {J #(G,,) =F,

m=1
for each fixed n. Since F, is a Baire space, there exists m, (depending on )
such that (G, ,) is non-meager in F,; it follows from (2.1) that w(G, ) = F,.
If U is any O-neighborhood in E, U n G,,, , is a 0-neighborhood in G,,, , by
(IL, 6.4); hence w(U n G, ,) is a 0-neighborhood in F, and a fortiori u(U) N F,
is a neighborhood of 0 in F,. Since this holds for all #» € N, it follows that u(U)
is a O-neighborhood in F, and hence u is a homomorphism.

Another direct consequence of Banach’s theorem (2.1) is the following
frequently used result, called the closed graph theorem.

23

Theorem. If L and M are complete, metrizable t.v.s., a linear mapping
of L into M is continuous if and only if its graph is closed in L x M.

Proof. Recall that the graph of u is the subset G = {(x, u(x)): x e L} of
L x M. Clearly, if u is continuous, then G is closed in the product space L x M.
Conversely, if G is closed, it is (since u is linear) a complete, metrizable
subspace of L x M. The mapping (x, u(x)) - x of G onto L is biunivocal,
linear, and continuous, and hence an isomorphism by (2.1). It follows that
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x — (x, u(x)) is continuous, whence u is continuous by definition of the
product topology on L x M.

3. SPACES OF LINEAR MAPPINGS

Let F be a vector space over K, let T be a set, and let & be a family of subsets
of T directed under set-theoretic inclusion <. (Whenever the lettev & is used
in the following, it will denote a family of sets with this property.) A subfamily
S, of & is fundamental (with respect to ©) if it is cofinal with & under in-
clusion (that is, if each member of € is contained in some member of &,).
Consider the vector space FT, product of T (more precisely, of card T) copies
of F; as a set, FT is the collection of all mappings of T into F. Suppose in
addition that Fis a t.v.s., and let B be a neighborhood base of 0 in F. When S
runs through S, V through B, the family

M(S, V) ={f:f(S) =V} *)

is a O-neighborhood base in FT for a unique translation-invariant topology,
called the topology of uniform convergence on the sets S € S, or, briefly, the
S-topology. For if V< VNV, and S; U S, cS;, then M(S;, V;) is
contained in M(Sy, Vy) n M(S,, V,); hence the sets (*) form a filter base in
FT which has the additional property that M(S, V) + M(S, V) = M(S, U)
whenever V' + ¥V < U. In (*), the family & can evidently be replaced by any
fundamental subfamily, and likewise we note that the S-topology does not
depend on the particular choice of the neighborhood base B of 0 in F. Now
we have to settle the question under what conditions FT, or a subspace G of
FT, is a t.v.s. for a given S-topology.

31

A (vector) subspace G < FT is a t.v.s. under an S-topology if and only if
for each f€ G and S € G, f(S) is bounded in F.

Proof. The sets M(S, V) n G (S € S, V € B) form a base of the 0-neighbor-
hood filter of the topology T induced on G by the G-topology; in what
follows we shall denote these sets again by M(S, V) with the understanding
that now M(S, V) = {fe G: f(S) =V}. For (G, I) to be a t.v.s., by (I, 1.2) it
is necessary and sufficient that the O-neighborhood filter have a base consist-
ing of radial and circled sets, since from the remark made above, it follows
that condition (a) of (I, 1.2) is satisfied. Since M(S, AV) = AM(S, V) for
each 4 # 0, M(S, V) is circled if V is circled; thus let B consist of circled sets.

Now suppose that for each S € S, f € G, the set f(S) is bounded in F. Then
for given f, S and V, there exists 4 > 0 such that f(S) = AV and hence f e
M(S, AV) = AM(S, V); it follows that M(S, V) is radial. Conversely, if T is a
vector space topology on G, each M(S, V) is necessarily radial; thus for given
/'S, and V, there exists A > 0 with fe AM(S, V) = M(S, AV). Hence f(S) =
AV, which shows f(S) to be bounded in F.
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32

Let F be a locally convex space, let T be a topological space, and let S be a
Sfamily of subsets of T whose union is dense. If G is a subspace of FT whose
elements are continuous on T and bounded on each S € S, then G is a locally
convex space under the S-topology.

Proof. If B is a 0-neighborhood base in F consisting of convex sets, then
each M(S, V) is convex; hence by (3.1) the S-topology is locally convex.
There remains to show that the S-topology is Hausdorff. Let f € G and f # 0;
since f'is continuous and |J{S: S € S} is dense, there exists ¢, € S, € S such
that f(z,) # 0. Since F is a Hausdorff space (Chapter II, Section 4), we have
f(to) ¢ V, for a suitable ¥V, € B. It follows that /¢ M(S,, V,), and hence the
S-topology is a Hausdorff topology on G.

If T is itself a t.v.s., and each S € & is bounded, and G is a vector space of
continuous linear maps into F, then the assumption that each f(.S) be bounded
is automatically satisfied by (I, 5.4), and for the conclusion of (3.2) to hold,
it suffices that the linear hull of |J{S: S € S} be dense. It is convenient to
have a term for this: A subset of a t.v.s. L is total in L if its linear hull is dense
in L. With this notation, we obtain the following corollary of (3.2).

COROLLARY. Let Ebe at.v.s.,let Fbeal.c.s., and let S be a family of bounded
subsets of E whose union is total in E. Then the vector space £(E, F) of all
continuous linear mappings of E into F is a locally convex space under the
S-topology.

Endowed with an S-topology, the space Z(E, F) is sometimes denoted by
ZL(E, F). It is no restriction of generality to suppose E separated, for if Ej, is
the Hausdorff t.v.s. associated with E (Chapter I, Section 2), then Z(E, F) is
algebraically isomorphic with Z(E,, F) (Exercise 5). Moreover, if E is Haus-
dorff and F is complete, #(E, F) is algebraically isomorphic with Z(E, F),
where E denotes the completion of E (Exercise 5). We shall see later thatevery
locally convex topology on a vector space E is an S-topology, where & is
a suitable family of subsets of the algebraic dual E* (Chapter IV, Section 1).

Examples

1. Let T be a given set, let F be any t.v.s., and let S be the family
of all finite subsets of 7. Under the S-topology, FT is isomorphic with
the topological product of T copies of F.

2. Let T be a Hausdorff topological space, let F be a l.c.s., and let
S be the family of all compact subsets of 7. Under the S-topology
(called the topology of compact convergence), the space of all continuous
functions on T into Fis a l.c.s.

3. Let E be a l.c.s. over K with dual E’; the weak dual (E’, 6(E’, E))
is the space Z(E, K,,) under the S-topology, with & the family of all
finite subsets of E.

4. Let E, F be l.c.s. The following S-topologies are of special import-
ance on Z(E, F):
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a. The topology of simple (or pointwise) convergence: S the family
of all finite subsets of E.

b. The topology of convex, circled, compact convergence: S the
family of all convex, circled, compact subsets of E.

c. The topology of precompact convergence: S the family of all
precompact subsets of E.

d. The topology of bounded convergence: S the family of all bounded
subsets of E. ‘

The families & in the preceding examples have the property that the union
of their members is E; such a family & is said to cover E.

A family € # { J} of bounded subsets of a l.c.s. E is called saturated
if (1) it contains arbitrary subsets of each of its members, (2) it contains
all scalar multiples of each of its members, and (3) it contains the closed,
* convex, circled hull of the union of each finite subfamily. Thus the families
S of Example 4¢ and 4d are saturated, and 4a and 4b are not saturated
unless E = {0}. Since the family of all bounded subsets of E is saturated
and since the intersection of any non-empty collection of saturated families is
saturated, a given family & of bounded sets in E determines a smallest
saturated family & containing it; & is called the saturated hull of S. E and
F being locally convex, it is clear that for each family & of bounded subsets
of E, the S-topology and the S-topology are identical on £(E, F). (Cf.
Exercise 7.)

To supplement the corollary of (3.2), we note that if {p,: « € A} is a family
of semi-norms generating the topology of F, the family of semi-norms

U= pso(u) = sup pa[u(x)]

(S € S, a € A) generates the S-topology on Z(E, F). In particular, if E and
F are normed spaces, the norm

u = [lull = sup{flu(x)l: [Ix|| = 1}

generates the topology of bounded convergence on #Z(E, F) (cf. Chapter II,
Section 2).

Returning to a more general setting, let E, F be Hausdorff t.v.s. over K,
let © be a (directed) family of bounded subsets of E, and let Z(E, F) be the
vector space over K of all continuous linear maps on E into F. We turn our
attention to the subsets of Z(E, F) that are bounded for the S-topology.

33
Let H be a subset of L(E, F). The following assertions are equivalent:

(a) H is bounded for the S-topology.
(b) For each O-neighborhood V in F, (\ u™ (V) absorbs every S € S.

ueH

(c) For each S €S, \J u(S) is bounded in F.

ueH

Proof. (a)=(b): We can assume V to be circled. If H is bounded, it is
absorbed by each M(S, V); hence u(S) = AV for all u € H and some A > 0,
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which implies S = A (Y u~}(V). (b)=(c): If S € S and a circled 0-neighbor-
ueH
hood V in F are given, then S< A () u~ (V) implies u(S) < AV for all

ueH
u € H; hence (J u(S) is bounded in F. (c)=>(a): For given S and V, the
ueH

existence of A such that u(S) = AV for all u e H implies H = AM(S, V),
hence H is bounded for the S-topology.

A subset of L(E, F) is simply bounded if it is bounded for the topology of
simple convergence (Examples 1 and 4a above). It is important to know
conditions under which simply bounded subsets are bounded for finer S-
topologies on Z(E, F).

34

Let E, F be l.c.s. and let S be the family of all convex, circled subsets of E
that are bounded and complete. Each simply bounded subset of ¥L(E, F) is
bounded for the S-topology.

Proof. If H is simply bounded in £(E, F) and V is a closed, convex, circled
0-neighborhood in F, then D = () u~*(V)is a closed, convex, circled subset

ueH
of E which is radial by (3.3)(b), and hence a barrel; thus by (11, 8.5) D absorbs
every S € S, which implies, again by (3.3), that H is bounded for the -
topology.

COROLLARY. If E, F are l.c.s. and E is quasi-complete, then the respective
Sfamilies of bounded subsets of £ (E, F) are identical for all S-topologies such
that S is a family of bounded sets covering E.

Proof. When E is quasi-complete, the family & of (3.4) is a fundamental
system of bounded sets in E; in other words, the S-topology of (3.4) is the
topology of bounded convergence. The assertion is now immediate.

4. EQUICONTINUITY. THE PRINCIPLE OF UNIFORM BOUNDEDNESS
AND THE BANACH-STEINHAUS THEOREM

If T is a topological space and F is a uniform space, a set H < FT is equi-
continuous at ¢, € T if for each vicinity (entourage) N = F x F, there exists
a neighborhood U(t,) of ¢, such that [ f(¢), f(¢,)] € N whenever ¢t € U(t,) and
fe H; H is equicontinuous if it is equicontinuous at each ¢ € 7. If T'is a uniform
space as well and if for each vicinity N in F there exists a vicinity M in T such
that (¢, t,) € M implies [f(¢,),f(¢;)] e N for all fe H, then H is called
uniformly equicontinuous. It is at once clear that if 7= E is a t.v.s., and if F
is a t.v.s., a set H of linear mappings of E into F is uniformly equicontinuous
(for the unique translation-invariant uniformities associated with the topol-
ogies of E and F, respectively (Chapter I, Section 1)) if and only if H is
equicontinuous at 0 € E; that is, if and only if for each 0-neighborhood V'in F,
there exists a 0-neighborhood U in E such that u(U) = V whenever u € H.
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Of course an equicontinuous set of linear mappings of E into F'is a subset of
Z(E, F).

As before, we shall denote by Z(FE, F) the space of all continuous linear
maps of E into F, E and F being Hausdorff t.v.s. over the same field K, and by
Z(E, F) the same space under an S-topology with & a-(directed) family of
bounded subsets of E whose union is total in E. Finally, L(E, F) will denote
the vector space of all linear maps (continuous or not) of E into F.

The proof of the following statement is quite similar to the proof of (3.3)
and will be omitted.

4.1
Let H be a subset of Z(E, F). The following assertions are equivalent:

(a) H is equicontinuous.
(b) For each O-neighborhood V in F, (\ u~ (V) is a 0-neighborhood in E.

ueH
(c) For each O-neighborhood V in F, there exists a 0-neighborhood U in E

such that ) wW(U) < V.
ueH

(4.1)(b) implies (3.3)(b), hence:

COROLLARY. Each equicontinuous subset of F(E, F) is bounded for every
S-topology.

The converse of this corollary is not valid (Exercise 10), but there are im-
portant instances in which even a simply bounded subset of £(E, F) is neces-
sarily equicontinuous.

4.2

Theorem. Let E, F be l.c.s. such that E is barreled, or let E, F be t.v.s.
such that E is a Baire space. Every simply bounded subset H of ¥(E, F) is
equicontinuous.

Proof. We give the proof first for the case where F is barreled and F is any
l.c.s. If V is any closed, convex, circled O-neighborhood in F, W = () u~ (V)

ueH
is a closed, convex, circled subset of E which, by condition (b) of (3.3),
absorbs finite subsets in E; thus W is a barrel and hence a 0-neighborhood in
E, whence H is equicontinuous by (4.1)(b).

If E is a Baire space, F is any t.v.s., and V is a given 0-neighborhood in F,
select a closed, circled 0-neighborhood ¥V, such that V; + V; < V. By (3.3)(b),
W= (\ u" (V) is a closed, circled subset of E which is radial, whence

ueH

oo

E = |J nW. Since E is a Baire space, n/ must have an interior point for at
1

least one n; hence W must have an interior point, whence U= W + W is a

neighborhood of 0 in E. Now u(W) < V; and hence u(U) =V for all u € H,
which proves H to be equicontinuous.
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An immediate consequence is the following classical result due to Banach-
Steinhaus [1], and known as the principle of uniform boundedness:

COROLLARY. Let E be a normed space, let F be a normed space, and let
H be a subset of L(E, F) such that sup{|u(x)|: u € H} is finite for every
x € M, where M is not meager in E. Then sup{||u|: u € H} is finite.

Proof. The linear hull E,, of M, which is clearly dense in E and a Baire
space, since M is not meager in E, has the property that H,, is simply bounded
in Z(Ey, F), where H, is the set obtained by restricting all u € H to E,,.
Hence by (4.2), H, is equicontinuous and thus norm bounded in £(E,,, F).
Now since the unit ball of E,, is dense in the unit ball of E, the mapping
u— uqy (4, the restriction of u € Z(E, F) to E,) is a norm isomorphism of
Z(E, F) into Z(E\, F); hence H is norm bounded as asserted.

Before we can prove the Banach-Steinhaus theorem (see (4.6) below) in
appropriate generality, we have to gather further information on equicon-
tinuous sets which will also be needed in Chapter IV. We note first that the
subspace L(E, F) of FE is closed in FE for the topology of simple convergence
(which is the topology of the product of E copies of F (Section 3, Example 1)):
Since Fis assumed to be Hausdorff and since f — f (x) is continuous on FE into
F for each x € E, it follows that the set

M(x, y, 4, ) = {f € F¥: f(x + py) — Af(x) — wf (y) = 0}

is closed for each fixed quadruple (x, y, 4, u), and L(E, F) = () M(x, y, A, )
where (x, y, A, u) ranges over E X E x K x K.
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If Hc %(E, F) is equicontinuous and H, is the closure of H in FE for the
topology of simple convergence, then H, = % (E, F) and H, is equicontinuous.

Proof. If u, € H,, then u, € L(E, F) by the preceding remark. Since H is
equicontinuous, there exists a 0-neighborhood U in E such that for all € H,
u(U) = V, where ¥V is a given 0-neighborhood in F which can, without re-
striction of generality, be assumed closed. From the continuity of f— f(x)
on FE into F, we conclude that u,(x) € V for all u; € H, and x € U. Thus H,
is equicontinuous in Z(E, F).

Combining this result with Tychonov’s theorem on products of compact
spaces, we obtain the following well-known result, known as the theorem of
Alaoglu-Bourbaki.

COROLLARY. Let E be a t.v.s. with dual E'; every equicontinuous subset of E' is
relatively compact for o(E', E).

Proof. The weak topology o(E’, E) is the topology of simple convergence
on E' = %(E, K,) and hence induced by the product topology of K§. By the
Tychonov theorem, a subset H = K¢ is relatively compact if (and only if) for
each x € E, {f(x):fe H} is relatively compact in K,. Now if Hc E’ is
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equicontinuous, there exists a 0-neighborhood U in E such that |u(x)| < 1 for
all ue H and x € U, thus if x, € E is given, there exists A >0 such that
Axo € U, whence |u(x,)| £ A7 for all u € H. Thus the closure H, of H in
KZE is compact; but since H, = E’ by (4.3), H, agrees with the closure H of H
in (E’, 6(E’, E)), so H is weakly compact, which proves the assertion.
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If F is quasi-complete and S covers E, every closed, equicontinuous set is
complete in £ (E, F).

Proof. Let H < & 4(E, F) be closed and equicontinuous. If & is a Cauchy
filter on H, it is a fortiori a Cauchy filter on H for the uniformity associated
with the topology of simple convergence; hence for each x € E the sets
{®(x): ® € F} are bounded and a base of a Cauchy filter in F (for H is bounded
and u — u(x) is linear and continuous). Since F is quasi-complete, this filter
base converges to an element u,(x) € F and by (4.3), x - u,(x) is in ZL(E, F).
Moreover, § being a Cauchy filter for the ©-topology, there exists ® € § such
that u(x) —v(x) e V for all ue®, ve® and x € S, where S €S and the
0-neighborhood V in F can be preassigned. Hence if ¥ is chosen to be closed,
it follows that u(x) — u,(x) € V for all u € ® and all x € S, implying that u; =
lim & for the S-topology.

COROLLARY. If E, F satisfy the assumptions of (4.2) and F is quasi-complete,
then & ((E, F) is quasi-complete for every S-topology such that S covers E.

For another condition guaranteeing quasi-completeness or completeness
of & (E, F) for certain S-topologies, see Exercise 8.

4.5

Let H be an equicontinuous subset of L(E, F). The restrictions to H of the
following topologies are identical:

1. The topology of simple convergence on a total subset of E.
2. The topology of simple convergence (on E).
3. The topology of precompact convergence.

Proof. Each of the three topologies is finer than the preceding one. The
result will be established if we can show that when restricted to H, topology 1
is finer than topology 3. Let A be a total subset of E. We have to show that
for each u, € H, 0-neighborhood ¥V in F, and precompact set S < E, there
exist a finite subset S, = 4 and a 0-neighborhood ¥, in F such that

[uo + M(So, Vo)1 N H = uo + M(S, V),

where the notation is that employed in Section 3. Select a 0-neighborhood
Win Fsuch that W+ W+ W+ W+ W < V, and a circled 0-neighborhood
Uin Esuchthat w(U) =« Wwhenever w € H. S (# ) being precompact, there
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exist elements y; € S (i = 1, ..., m) for which S = |J; (y; + U). Since the linear
hull of 4 is dense in E, there exist (supposing that E # {0}) elements x;; € 4

and scalars A;(i=1,...,m; j=1,...,n) such that y;e ) Ax;+ U. It
=
follows that ’
Sc U( llijx,-j+U+U).
j=1

i=1

Choose a circled 0-neighborhood ¥, in F with ) (4;;¥,) = W, and denote

i, J
by S, the finite set {x;:i=1,...,m;j=1,...,n}. If veM(S,, V,), then
v(x;;) € ¥, for all i, j and

n

wS)e U

i=1j=

1(/1:,~Vo)+ W(U)+v(U)= W+oU)+o(U).

Now let uge H and we H () [ug + M(Sy, Vo)]; then w=u,+ v, where
v e M(Sy, Vo). Since v =w — uy, v(U) = w(U) + uo(U) =« W+ W, since U is
circled. Thus o(S) = V, w = uy + v € uy + M(S, V), and the proof is complete.

The preceding results make it possible to prove the following theorem,
called the theorem of Banach-Steinhaus, in substantial generality (cf. Bour-
baki [8], chap. III). For briefness we call a filter § on a t.v.s. E bounded if
& contains a bounded subset of E.

4.6

Theorem. Let E, F be l.c.s. such that E is barreled; or let E, F be t.v.s.
such that E is a Baire space. If & is a filter in £(E, F), bounded for the topology
of simple convergence and which converges pointwise to a mapping u; € F E then
u, € #(E, F) and § converges uniformly to u, on every precompact subset of E.

Proof. Let @ be an element of § bounded for the topology of simple con-
vergence; by (4.2), @ is equicontinuous. If @, denotes the closure of ® in F E
then u; € ®; by hypothesis and by (4.3), ®, is contained in £(E, F) and equi-
continuous. Since by (4.5) the topologies of simple and precompact conver-
gence agree on ®,, the theorem is proved.

The theorem applies, in particular, to a sequence {u,} such that for each
x € E, {u,(x)} is a Cauchy sequence in F, provided that F is quasi-complete.
More generally, it applies when & is a filter (not necessarily bounded) with
countable base (Exercise 11). The following corollary is an extended version
of the classical form of the theorem (cf. Banach [1], chap. V, theor. 3-5.)

COROLLARY. Let E, F be Banach spaces, and let M = E be a subset not
meager in E. If {u,} = L(E, F) is a sequence such that {u,(x)} is a Cauchy
sequence in F for every x € M, then {u,} converges to an element u € Y(E, F)
uniformly on each compact subset of E.
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Proof. Let E,; be the linear hull of M; E,, is a non-meager subspace of E,
and hence a Baire space. Denoting by i, the restriction of u, to E, (n € N),
it follows from (4.6) that lim #,(x) = #@(x) for all x € E,,, where il € L(E\,, F).
By the corollary of (4.2), the sequence {u,} is norm bounded in #(E, F) and
hence equicontinuous; thus if we denote by u the unique continuous extension
of # to E, the set H = {u,: n € N} U {u} is still equicontinuous. It follows now
from (4.5) that lim u, = u uniformly on every precompact (or equivalently,
since E is complete, on every compact) subset of E.

We conclude this section by giving conditions under which an equicontin-
uous set H < Z(E, F) is metrizable and separable. Recall that a metric space
possesses a countable base of open sets if and only if it is separable.

4.7

If H c #(E, F)is equicontinuous, if E is separable and if F is metrizable, then
the restriction to H of the topology of simple convergence is metrizable. If, in
addition, F is separable, then H is separable for this topology.

Proof. In view of (4.5) it is sufficient to prove the theorem for the topology,
restricted to H, of simple convergence on a total subset of E. Since FE is sepa-
rable, there exists an at most countable subset 4 = {x,} of E which is linearly
independent and total in E. Take {V,,} to be a countable 0-neighborhood base
in F, and let S, = {x,:k < n}. Clearly, the sets M(S,, V,), (n, m)e N x N,
form a neighborhood base of 0 in .Z(E, F) (notation as in Section 3) for the
topology of simple convergence on A4; hence this topology is metrizable by
(I, 6.1) and so is its restriction to H.

In view of the remark preceding (4.7), the second assertion will be proved
when we show that the S-topology, & = {S,: n € N}, on L(E, F) (which is, in
general, not a Hausdorff topology) possesses a countable base of open sets.
To this end, extend A4 to a vector space basis Bof E,let Y ={y,,ne N} bea
dense subset of F, and define Q to be the set of elements u € L(E, F) such that
u(z) = 0 for all z € B except for finitely many x, € A (v =1, ..., n) for which
u(x,) = y,,, where {y, } is any non-empty, finite subset of Y. Q is clearly
countable, and dense in L(E, F) for the S-topology: If u € L(E, F) and u +
M(S,, V,,) is a given neighborhood of u, then we choose u, € Q such thatu,(x)
€ u(x) + V,, for each x € S, (which is possible, since Y is dense in F), whence
it follows that uy € u + M(S,, V,,). Thus if we denote by M(S,, V,,)° the inter-
ior of M(S,, V,,) in L(E, F), it is immediate that the countable family {u +
M(S,,V,):ue Q,(n,m)eN x N} is a base of open sets for the S-topology.

5. BILINEAR MAPPINGS

Let E, F, G be vector spaces over K; a mapping f of E x Finto G is called
bilinear if for each x € E and each y € F, the partial mappings f,: y = f(x, )
and f,: x = f(x, y) are linear. If E, F, G are t.v.s., it is not difficult to prove
that a bilinear map f is continuous if and only if f is continuous at (0, 0)
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(Exercise 16); accordingly, a family B of bilinear maps is equicontinuous if and
only if Bis equicontinuous at (0, 0). A bilinear map is said to be separately con-
tinuous if all partial maps f, and f, are continuous; that is, if f, € £(F, G) for
all x € E and f, € Z(E, G) for all y € F. Accordingly, a family B of bilinear
maps of E x Finto Gisseparately equicontinuous if for eachxe E and eachy e F
the families {f,: f € B} and {f,: f € B} are equicontinuous. Finally, if G = K,,
then a bilinear map of E X F into G is called a bilinear form on £ x F.

The following important result is a special case of a theorem due to
Bourbaki [8] (chap. III, §3, theor. 3):

5.1

Theorem. Let E, F be metrizable and let G be any t.v.s. If E is a Baire
space or if E is barreled and G is locally convex, then every separately equi-
continuous family B of bilinear mappings of E x F into G is equicontinuous.

Proof. In view of the identity (f € B)

S(x, 9) = f(x0, yo) =f(x = X, ¥ = yo) + (X = Xo, Yo) + f(X0, ¥ — ¥o)

and the separate equicontinuity of B, it is sufficient to prove the equicontin-
uity of B at (0, 0). Denote by {U,}, {V,} decreasing sequences that constitute
‘a 0-neighborhood base in E, F respectively; {U, x V,} is a 0-neighborhood
base in E x F. Now if B were not equicontinuous at (0, 0), there would
exist a 0-neighborhood W, in G and sequences {x,}, {y,}, with x, € U,
Yn € V,, (n € N) such that for all n, f,(x,, y,) ¢ Wo, where {f,} is a sequence
suitably chosen from B. We shall show that this is impossible. Since for each
fixed x € E, the family {f,: f € B} is equicontinuous, by the corollary of (4.1)
it is bounded for the topology of compact convergence on Z(F, G); thus
{f:({y.}): f € B} is bounded in G by (3.3), since {y,}, being a null sequence in
F, is relatively compact. Therefore by (3.3)(c) the family {x — f,(x, y,): n € N}
of linear maps is simply bounded in #(E, G) and hence is equicontinuous
by (4.2); it follows that f,(U, y,) = W, (n € N) for a suitable 0-neighbor-
hood U in E, which conflicts with the assumption that f,(x,, y,) ¢ W, (n € N),
since {x,} is a null sequence in E.

COROLLARY 1. Under the assumptions made on E, F, G in (5.1), every sep-
arately continuous bilinear mapping on E x F into G is continuous.

COROLLARY 2. In addition to the assumptions made on E, F, G in (5.1),
suppose that F is a Baire space or (if G is locally convex) that F is barreled.
If B is a family of separately continuous bilinear maps of E x F into G such that
{f(x, y): f € B} is bounded in G for each (x, y) € E x F, then B is equicontinuous.

The proof of Corollary 1 is obtained by applying (5.1) to the family B
consisting of a single element f; the proof of Corollary 2 is also easy, since
by (4.2) the assumptions imply that B is separately equicontinuous.
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As simple examples show (Exercise 17), in general, a separately continuous
bilinear map is not continuous; it has thus proved fruitful to introduce an
intermediate concept that is closely related to the notion of an &-topology.
Let E, F, G be t.v.s., let S be a family of bounded subsets of E, and let fbe a
bilinear map on E x F into G. f'is called S-hypocontinuous if f is separately
continuous and if, for each S € € and each 0-neighborhood W in G, there
exists a 0-neighborhood V in F such that /(S x V) = W. By (4.1) it amounts
to the same to require that for each S € S the family {f: x € S} be equicon-
tinuous. The T-hypocontinuity of f is analogously defined if T is a family
of bounded subsets of F: f'is T-hypocontinuous if, for each T e I, {f,: y e T}
is equicontinuous, and if fis separately continuous. Finally, a bilinear map is
(S, T)-hypocontinuous if it is both S-hypocontinuous and T-hypocontinuous.
Note that separate continuity emerges as a particular case when S and T are
the families of all finite subsets of E and F, respectively.
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If F is barreled and G is locally convex (or if F is a Baire space), every
separately continuous bilinear map f of E x F into G is B-hypocontinuous,
where B is the family of all bounded subsets of E.

Proof. The separate continuity of fis obviously equivalent to the assertion
that the linear map x — f; of E into L(F, G) maps E into Z(F, G) and is con-
tinuous for the topology of simple convergence on Z(F, G). Thus if B< E
is bounded, {f,: x € B} is simply bounded in #(F, G) and hence is equicon-
tinuous by (4.2); this establishes the proposition.

5.3

Let S, T be families of bounded subsets of E, F, respectively, and let f be a
bilinear map of E x F into G, where E, F, G are t.v.s. If f is S-hypocontinuous,
then f is continuous on S x F for each S € S, if f is (S, T)-hypocontinuous, then
[ is uniformly continuous on S x T for each S € S and T € T.

Proof. The first assertion is an immediate consequence of the S-hypo-
continuity of fand the identity

J(x,¥) = f(x0, o) =f(x, ¥y — yo) + f(x — X0, ¥o)

to be applied for x, x, € S and y, y, € F. To prove the second assertion,
allow x, X to be variable in S and y, j to be variable in 7. Since f'is (S, I)-
hypocontinuous, for a given 0-neighborhood W in G, there exist 0-neighbor-
hoods U, V in E, F, respectively, such that /(S x V) =« Wand f(U x T) = W.
If x—XxeU,y— yeV,it follows that

S0 —fE P = 6,y =P +f(x—X, )eW+ W,

hence f is uniformly continuous on S x T.
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The preceding result is useful for the extension of (S, ¥)-hypocontinuous
bilinear maps.

Let E, E,, F, F, be t.v.s. such that E is a dense subspace of E; and Fis a
dense subspace of F;. Suppose that € is a family of bounded subsets of E with
the property that S, covers E;, where S; denotes the family of the closures,
taken in E;, of all S € S; suppose further that T is a family of bounded sub-
sets of F, such that the corresponding family ¥, of closures covers Fj;
finally, let G be a quasi-complete Hausdorff t.v.s. Under these assumptions,
the following extension theorem holds:

5.4

Every (S, T)-hypocontinuous bilinear mapping of E x F into G has a unique
extension to E; x F, (and into G) which is bilinear and (S,, X,)-hypocontinuous.

Proof. As before (Section 3), we suppose S, T to be directed under *“ = ”
(which is, incidentally, no restriction of generality); then so are the families
{S x T} and {S; x T;}. Since S x T is dense in the uniform space S; x Tj,
the restriction f5  of the bilinear map f to S x T has by (5.3) a unique
(uniformly) continuous extension fs, 1, to S; x T; with values in G (since
J(§ x T) is bounded and G quasi-complete). Since the family {S; x T;:
S € S, T eI} is directed and covers E, x Fj, it follows that in their totality,
the extensions fs, r, define an extension f of f'to E; x F;. This argument also
shows that a possible extension of f with the desired properties is necessarily
unique; it remains to show that f is bilinear and (S,, ,)-hypocontinuous.

Let X € E; be given; there exists S; with X € S;. The map ¢5: y = f(X, »)
(y € F) is an element of Z(F, G) by (4.3) since, f being S-hypocontinuous,
{f.: x € S} is equicontinuous in .Z(F, G). Now ¢; has a unique continuous
extension to F; with values in G, which must necessarily agree with f:
7 — f(X, 7), since G is separated (uniqueness of limits). Hence each f; (and by
symmetry, each f) is linear and continuous, which shows f'to be bilinear and
separately continuous.

Since f'is S-hypocontinuous, for each S € S there exists a 0-neighborhood
Vin F such that (S x V) c W, W being a given 0-neighborhood in G which
can be assumed closed. Denoting by V; the closure of ¥V in F, (V; is a O-
neighborhood in Fj, cf. (I, 1.5)), it follows from the separate continuity of f
that f(S x ¥;) = W and, repeating the argument, that f(S; x V;) = W. Thus
fis &,-hypocontinuous and (by symmetry) T,-hypocontinuous, which com-
pletes the proof.

We remark that if £ and G are locally convex, an &-hypocontinuous bi-
linear map of E x F into G is also &-hypocontinuous, where & denotes the
saturated hull of & (Section 3), with a corresponding statement holding under
(S, T)-hypocontinuity.

The set of all bilinear mappings of E x Finto G is a vector space B(E, F; G)
which is a subspace of GE*F; the subspaces of B(E, F; G) (supposing E, F, G
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to be t.v.s.) consisting of all separately continuous and all continuous bilinear
maps, respectively, will be denoted by B(E, F; G) and by #(E, F; G). The
corresponding spaces of bilinear forms will be denoted by B(E, F), B(E, F),
and #4(E, F).

If © and T are families of bounded subsets of E and F, respectively, and
if D is a subspace of B(E, F; G), we consider the topology of € x T-conver-
gence on D (Section 3), that is, the topology of uniform convergence on the
sets S x T, where S € S and T € T, We recall that D is a t.v.s. under this
topology if (and only if) for all S € S, T € ¥ and f'e D, f(S x T) is bounded
in G; this is, in particular, always the case when D = #(E, F; G) (cf. Exercise
16). If the preceding condition is satisfied and G is locally convex, then the
& x I-topology is locally convex. We leave it to the reader to verify that if G
is separated and D < B(E, F; G), the & x T-topology is a Hausdorff top-
ology whenever & and ¥ are total families (that is, families whose union is a
total subset of E or F, respectively).

The following is a general condition under which B(E, F; G) is a l.c.s. for
an © x I-topology.

5.5

Let E, F, G be locally convex spaces; denote by € a total, saturated family of
bounded subsets of E such that the closure of each S € & is complete, and denote
by T a total family of bounded subsets of F. Then B(E, F; G) is a locally convex
space under the S x I-topology.

Proof. We have to show that for each fe B(E, F; G) and all sets Se€ S,
TeZ, f(S x T)is bounded in G; since S is saturated, we can suppose S to be
closed, convex, and circled. Now since T is bounded in F and since (by the
separate continuity of /) the linear map y — f, is continuous on Finto £(E, G)
when Z(E, G) carries the topology of simple convergence, the set {f,: y € T}
is simply bounded in Z(E, G). Thus if W is a closed, convex, circled 0-neigh-
borhood in G, the set U = {f, '(W): y e T} is closed, convex, circled, and by
(3.3) radial; hence U is. a barrel in E. It follows from (II, 8.5) that U absorbs
S, whence we have f(S x T) < AW for a suitable scalar A. Since W was an
arbitrary element of a 0-neighborhoood base in G, (S x T) is bounded.

The conditions of the preceding proposition are, in particular, satisfied if
E and F are replaced by the weak duals (Chapter II, Section 5) E. =
(E’, 0(E’, E)) and F, of two arbitrary l.c.s. E and F, and if G and T are taken to
be the families of all equicontinuous subsets of E’ and F”, respectively; for &
and T are saturated families of bounded sets whose closed members are
compact (hence complete) in E, and F,, respectively, by the corollary of
(4.3). This © x T-topology is called the topology of bi-equicontinuous con-
vergence (Grothendieck [13]), and under this topology, B(E., F.; G) is a
locally convex space which will be denoted by B.(E., F.; G).
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6. TOPOLOGICAL TENSOR PRODUCTS

Let E, F be vector spaces over K and let B(E, F) be the vector space of all
bilinear forms on E x F. For each pair (x, y) € E x F, the mapping f — f(x, y)
is a linear form on B(E, F), and hence an element u, , of the algebraic dual
B(E, F)*. It is easily seen that the mapping x: (x, y) > u,,, of E x F into
B(E, F)* is bilinear. The linear hull of y (E x F)in B(E,F)*isdenotedby E® F
and is called the tensor product of £ and F; y is called the canonical bilinear
map of E x F into EQ® F. The element u, , of E® F will be denoted by
x ® y so that each element of E ® F is afinite sum ) A,(x; ® y;) (the sum over
the empty set being 0). We shall also find it convenient to write 4 ® B =
(A x B) for arbitrary subsets 4 = E, B c F, although this usage is inconsist-
ent with the notation £ ® F. Ambiguity can be avoided if, only for subspaces
M c E, NcF, the symbol M ® N denotes the linear hull of (M x N)
rather than the set y(M x N) itself.

One verifies withoutdifficulty therules A(x ® y) = (Ax) ® y = x ® (Ay)(1 € K),
(X1 +x)@y=x®y+x,®y,andx ® (y; + y;) = x®y; + x® y,. Hence
each element ue EQF is of the form u =in ® y;. Obviously, the
representation of u is not unique, but it can be assumed that both sets
{x;} and {y,} are linearly independent sets of (= 0) elements. The number r is
uniquely determined by u and called the rank of u; it is the minimal number of
summands by means of which u can be represented (Exercise 18).

One of the principal advantages of tensor products lies in the fact that they
permit us to consider vector spaces of bilinear (more generally, of multilinear)
maps as vector spaces of linear mappings. We recall this more precisely :

6.1

Let E, F be vector spaces over K and let y be the canonical bilinear map of
E x Finto E® F. For any vector space G over K, the mapping u— u o y is an
isomorphism of L(E ® F, G) onto B(E, F; G).

Proof. 1t is clear that u—>u oy =f is a linear map of L(E® F, G) into
B(E, F; G), which is one-to—one, since /=0 implies u(x ® y) = f(x,y) =0
for all x € E and y € F, hence u = 0. It remains to show that the map is onto
B(E, F; G). For any f€ B(E, F; G) define u(} x; ® y)) =) f(x;, y;); itis clear
that the definition is consistent, that u is linear on E® F into G, and that
Sf=uoy.

COROLLARY. The algebraic dual of E® F can be identified with B(E, F);
under this identification, each vector space of linear forms on E ® F is a vector
space of bilinear forms on E x F, and conversely.

In particular, E* ® F* can be identified with a space of bilinear forms on
E x F by means of (x* ® y*)(x, y) = x*(x)y*(»), and hence with a subspace of
(E ® F)*; it is readily seen that E* ® F* separates points in E® F.
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In order to define useful topologies on E® F when E, F are t.v.s., we
restrict our attention to locally convex spaces E, F and locally convex top-
ologies on E ® F. Consider the family J of all locally convex topologies on
E ® F for which the canonical bilinear map (E, F being l.c.s.) on E x F into
E ® F is continuous: The upper bound I, of 7 (Chapter II, Section 5) is a
locally convex topology, called the projective (tensor product) topology on
E® F. 1t is immediate that when U, B are 0-neighborhood bases in E, F,
respectively, the family of convex, circled hulls {[(U® V): Ue U, Ve B} isa
neighborhood base of 0 for T,; thus the projective topology is the finest
locally convex topology on E® F for which the canonical bilinear map is
continuous. We shall see at once that I, is always a Hausdorff topology.

6.2

Let E, F, G be locally convex spaces and provide E ® F with the projective
topology. Then the isomorphism u— u o y of (6.1) maps the space of continuous
linear mappings £ (E ® F, G) onto the space of continuous bilinear mappings
B(E, F; G).

Proof. 1t is clear that the continuity of u implies that of u o x, since x is
continuous. Conversely, if W is a convex, circled 0-neighborhood in G and
f=uox is continuous, then £~ !(W) contains a 0-neighborhood U x V in
E x F. Tt follows that «~ (W) contains U ® V. Since u~ (W) is convex and
circled, it contains [ (U ® V), which proves the continuity of u.

COROLLARY. The dual of E ® F for the projective topology can be identified
with the space #(E, F) of all continuous bilinear forms on E x F. Under this
identification, the equicontinuous subsets of (E ® F) are the equicontinuous sets
of bilinear forms on E x F.

This corollary implies that I, is necessarily Hausdorff, for evidently
E'® F' < #(E, F); thus if we show that E’' ® F’ separates points in E® F,
it follows that o(E ® F, #(E, F)) and a fortiori ¥, is a Hausdorff topology.

Nowifue EQ Fis of rank r 2 1, say,u—Zx ® ¥, then {x;} and {y,} are

linearly independent, whence by (II, 4.2), Corollary 1, there exist linear forms
f1 € E" and g, € F’ such that fi(x;) = 6;; and g,(»y) = ;; (i=1, ..., r), and it
follows that f; ® g,(u) = ) fi(x1)9:(»)) = 1. For a description of T, by semi-
norms, we need the following result:

6.3

Let p,q be semi-norms on E, F respectively, such that p is the gauge of
U c E, and q is the gauge of V < F. Then the semi-norm on E® F,

u— r(u) = inf {Zip(xi)q(yl‘): u =in ®yi},

is the gauge of | (U ® V) and has the property that r(x ® y) = p(x)q(y) for all
xeE yeF.
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Proof. It is immediate that r is a semi-norm on E® F; let M, =
{u: r(u) <1}, M; = {u: r(u) £ 1}. To prove that r is the gauge of [(U® M),
it suffices to show that My = [(U® V)= M. If ue [(U®V), then u =
Y A(x; ® y;), where x; € U, y; € Vforalliand ) |A;| £ 1. Nowu = Y %, @ y;,
where X; = A,;x;, whence r(u) < Y p(X:)g(y) = Y| Ai|p(x)g(y;) < 1. Onthe other
hand, ifu € My, thenu = ) x; ® y;, where Y p(x;)q(y;) < 1. Thus there exist real
numbers &; > 0 such that ) u; < 1, where »; = [p(x;) + &]1lq(y;) + €] for all i.
Set x; = x;/[p(x;) + ¢;]and y; = y;/[q(»;) + ¢;]; then X; € U, y; € V, and hence
u= Z#i(fi R7)elURY).

To prove the second assertion, let x, € E, y, € F be given; we conclude from
(I, 3.2) that there exist linear forms f€ E*, g € F* such that f(x,) = p(x,),
9(0) = 4(vo), and | f(X)| < p(x), |9(»)| = q() for all x € E, y € F. [Define f on
the subspace generated by x, by f(Ax,) = Ap(x,) and extend to E.] It is
immediate that for the linear form f®g on EQ Fand u =Y x;® y;, we
have | /® g(w)| Y p(x)q(y:), whence |f® g(u)| < r(w); hence p(xo)q(yo) <
r(xo ® yo)- Since clearly r(xo ® yo) = p(x0)q(»o), the proof is complete.

The semi-norm r is called the tensor product of the semi-norms p and ¢, and
is denoted by p ® ¢. It is not difficult to prove that p ® g is a norm on EQ F
if and only if p and ¢ are norms on E and F, respectively (Exercise 20). A
family P of semi-norms on E is directed if, for each pair p,, p, € P, there exists
p3 € P such that sup (p;, p,) < p,; if P is directed, the sets U, , ={x € E:
p(x) £n~ '} (p e P, n e N) form a neighborhood base of 0 for a locally convex
topology on E (Chapter 11, Exercise 8). Thus we obtain this corollary of (6.3):

COROLLARY. Let E, F be locally convex spaces and let P and Q be directed
families of semi-norms generating the topologies of E and F, respectively.
The projective topology on E® F is generated by the directed family

{pr®q: (p,q) € P x Q}.

In particular, if E and F are normed spaces, then the tensor product of the
respective norms generates the projective topology on E ® F (Exercise 21).

If E, F are any l.c.s., then (E ® F, ¥,) is a l.c.s. as we have seen above;
hence by (I, 1.5) it can be imbedded in a complete l.c.s. which is unique (to
within isomorphism) and will be denoted by E & F. It results from the corol-
lary of (6.3) that if E, F are metrizable, then E ® F is an (F)-space. It is one of
the fundamental results (also due to Grothendieck [13]) of the theory to have
an explicit representation of E & F, when E, F are metrizable l.c.s. (For the
definition of an absolutely convergent series in a t.v.s. E, see Exercise 23.)

6.4

Theorem. Let E, F be metrizable l.c.s.; each element ue E® Fis the
sum of an absolutely convergent series,

Ms

u= ) 4x;®y;

i

1

where ;|| < + oo, and {x;}, {y;} are null sequences in E, F, respectively.
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Proof. (The following simple proof is due to A. Pietsch.) Let {p,}, {q,} be
increasing sequences of semi-norms generating the topologies of E, F re-
spectively, and denote by r, the semi-norm p, ® g, (n € N); the sequence {r,}
generates the projective topology of E® F and is increasing. Denote by
7,(n € N) the continuous extension of r, to E ® F.

Given ue EQ F, there exists a sequence {u,} in E® F such that

11
Folu —u,) <n™2 270*D et 3 A;x, ® y; be any representation of u;, and set
i=1
v, = U,  — U, forallneN.
We have

Po(0) S Fu — uy) + F(u — g )
S F(u = ) + Foy (U =ty y) <n™2277,

We conclude from (6.3) that there exists a representation

in+1

Uy = Z Aix; ® y;
i=ip+1
such that pn(xi) é n_l’ qn(xi) —_g_. n—l
Y s2m

i=ip+1

whenever i, <i<i,,,, and such that

Therefore, we have u=u, +) v,=) A,x;®y;, where the sequences
1 1
{x:}, {»:}, and {4;} have the desired properties, and the proof is complete.

We shall now consider a general example of a projective tensor product.
Let (X, Z, 1) be a measure space (Chapter II, Section 2, Example 2) so that u
is a positive measure on X, and L'() the Banach space of (equivalence classes
modulo p-null functions of) real-valued u-summable functions on X, with
II£1l = [|f|du. Let E be any Banach space over R and let S be the vector
space over R of all E-valued simple functions; that is, functions ¢ of the

n
form ¢ — Y y(1)x;, where , are the characteristic functions of # sets S; € T
i=1

such that u(S;) < + oo, and x; are arbitrary elements of E. It is clear that
¢ — [l¢lldu is a semi-norm p on Sg; now LL(u) is defined to be the com-
pletion of the Hausdorff (hence normed) space (Sg, p)/p~'(0). The space
Li(p) is called the space of (classes of ) E-valued u-summable functions.

We show that the Banach space Li(u) is norm-isomorphic with L'() & E.
There exists a natural imbedding u — & of L}(x) ® E into LL(u) such that for
u=)y fi®x;, @ is the class containing the function ¢ — Y. f®)x;; evidently
u— i is linear and maps S @ E onto Sy, where S denotes the subspace of
L'(p) whose elements contain a simple function, and where S; = Sg/p~(0).
Denote by r the tensor product of the norms of L'(u) and E, respectively;
since

p(#) =f I 2 g,y du® £ 3 lig;ll 1yl
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holds for all representations ) g; ® y; of a fixed element u, it follows that
p(@) < r(u). On the other hand, if u € S ® E, we can choose a representation
u=Y;® x; such that the characteristic functions y; have disjoint carriers
S;, which implies r(u) < Y |¥;|| [Ix;|| = p(@). Thus u — i is a norm isomorphism
of S ® E onto S and the assertion follows from the fact that S ® E is dense in
L'(u) ® E, since S is dense in L'(y).

In the preceding considerations, it is not essential that E be a Banach (or
even normable) space. If E is any l.c.s. with P a family of semi-norms genera-
ting the topology of E, we define Si as before and a locally convex topology
on Sg by means of the semi-norms ¢ — [p[¢(1)]du(?) (p € P); the completion
of the associated Hausdorff t.v.s. then serves to define L}(u), and we prove,
as before, that u — # is an ismorphism of S ® E (under the projective topology)
onto S;. Hence:

6.5

The natural imbedding of L'(u) ® E into Li(u) induces an isomorphism of
LY(u)® E onto LL(1) which is norm-preserving if E is a Banach space.

We have seen above that the projective topology ¥, on E® F is the finest
l.c. topology for which the canonical bilinear map is continuous. Another
topology of importance on E® F is the inductive (tensor product) topology
I;, defined to be the finest l.c. topology on E ® F for which the canonical
bilinear map is separately continuous. ¥, is an inductive topology in the sense
of Chapter II, Section 6; in analogy to (6.2) above, we show that for every
l.c.s. G, the isomorphism of (6.1) carries the space of T;-continuous linear
maps into G to the space of all separately continuous bilinear maps on £ x F
into G. In particular, the dual of (E® F, ¥;) is the space B(E, F) (Exercise
22). We shall not be further concerned with I;, for which we refer the reader
to Grothendieck [13] as well as for other topologies on E ® F whose defini-
tion is based on the (S, T)-hypocontinuity (Section 5) of the canonical bi-
linear map y. Let us point out that under the assumptions of (5.1), T, and I,
agree on EQ F.

A topology on E ® F of considerably greater importance than I;is the top-
ology ¥, of bi-equicontinuous convergence; viewing £ ® F as a space of linear
maps on E’' @ F’ by virtue of x @ y(x’' ® y') = x'(x)y'(y), I, is the topology
of uniform convergence on the sets S® T, where S, T are arbitrary equi-
continuous subsets of E’, F’, respectively. ¥, can be equally characterized
as the topology induced on (the subspace) E® F by B, (E,, F,) which is a
l.c.s. (see end of Section 5). The completion of (E ® F, ¥,) will be denoted by
E®F. 1t is not difficult to see that T, is coarser than I, on E® F; for a
successful study of this topology, we need a number of results on duality
(Chapter 1V). For the moment, we mention only that lf E, F are complete
l.c.s., then B (E,, F,) is complete, whence in this case, E® F can be identified
with the closure of E® F in 8B(E,, F,).
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7. NUCLEAR MAPPINGS AND SPACES

If E is a vector space over K and V' is a convex, circled, and radial subset of
E, then {n~'V: n € N} is a O-neighborhood base for a locally convex topology
T, on E. The Hausdorff t.v.s. associated with (E, ¥,) is the quotient space
(E, T,)/p~1(0), where p is the gauge of V; this quotient space is normable
by the norm £ — ||£|| = p(x), where x € £. We shall denote by E;, the normed
space (E[p~*(0), || ) just introduced, and by E, its completion, which is a
Banach space. If Eis a l.c.s. and V is a convex, circled neighborhood of 0, the
topology of the quotient space E/p~!(0) is (in general, strictly) finer than the
topology of E,. Thus the quotient map (called the canonical map) is continu-
ous on E into E, ; this map will be denoted by ¢,

Dually, if Eisal.c.s. and B # J a convex, circled, and bounded subset of E,

00
then E, = |J nB is a (not necessarily closed) subspace of E. The gauge func-
n=1
tion py of B in E; is quickly seen to be a norm on E;; the normed space
(E,, pp) will henceforth be denoted by Ep. It is immediate that the imbedding
map Y5: Eg — E (again called canonical) is continuous. Moreover, if B is
complete in E, then Ep is a Banach space by (I, 1.6). We finally note that no
confusion can arise if ¥ = B is a convex, circled subset of E which is radial
and bounded, for in this case the spaces E,, and E are identical.

If U, V are convex, circled, and radial subsets of E with respective gauge
functions p, ¢ and such that U < V, then p~!(0) = ¢~ !(0) and each equiva-
lence class £ mod p~!(0) is contained in a unique equivalence class § mod
g~ '(0); £ — 9 is a linear map ¢, y, which is called the canonical map of E,
onto Ey. Since ¢y y is clearly continuous (in fact, of norm < 1), it has a
unique continuous extension on £y, into Ej,, which is again called canonical,
and also denoted by ¢y .

Likewise, if B and C are convex, circled, and bounded sets of a l.c.s. E
such that J+# B < C, then E = E¢ and the canonical imbedding ¢ p: Ep — E.
is continuous. Finally, if U, V¥, B, C are as before and ¢y, ¢y, ¥, Y are the
canonical maps E— Ey, E— E,, Eg— E and E; — E, we have the relations
vy =¢yuodyand Yc=YcpoYs

The two methods of constructing auxiliary normed spaces were syste-
matically employed by Grothendieck [13] and will be extremely useful in
what follows. We have used these methods before in Chapter II (proof of
(I1, 5.4) and the discussion preceding (I1, 8.4)).

Let E, F be l.c.s. and let E’ be the dual of E. Each element ve E'® F
defines a linear map u € Z(E, F) by virtue of

x—u() = ¥/

if v=) fi®y;, and v > u is even an (algebraic) isomorphism of E’ ® F into
i=1
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Z(E, F) (Exercise 18). The mappings u € £(E, F), which originate in this
fashion from an element ve E’'® F, are called continuous maps of finite
rank; the rank r of u is defined to be the rank of v (Section 6). The mappings of
finite rank are very special cases of compact linear maps on E into F: A linear
map u on E into F is compact if, for a suitable 0-neighborhood U in E, u(U) is
a relatively compact subset of F.

Suppose now that E, F are Banach spaces, and let E’ be the Banach space
which is the strong dual of E (Chapter II, Section 2). Then the imbedding
v—u is continuous for the projective topology on E’® F and the norm
topology (the topology of bounded convergence) on Z(E, F): Ifve E'® F
then

Iull = sup GOl < sup ¥ 1A Iyl < 3 14 1y

lIxll =1

r
for all representations v = ) f; ® y;; hence ||u|| < r(v), where the norm r is
i=1

13

the tensor product of the respective norms of E and F (cf. (6.3) and its corol-
lary). Since Z(E, F) is complete under the norm topology by the corollary
of (4.4), the imbedding v — u has a continuous extension 7 to E’ ® F, with
values in Z(E, F). The linear maps contained in the range of t are called
nuclear; that is, u € £ (E, F) is nuclear if u = 7(v) for some v € E'® F. (It is
known that 7 is not necessarily one-to-one, cf. Chap. IV, Exerc. 30.)

The definition of a nuclear map generalizes to arbitrary l.c.s. E, F as fol-
lows. A linear map u on E into Fis bounded if for a suitable 0-neighborhood U
in E, u(U) is a bounded subset of F (for example, every compact map is boun-
ded); every bounded map is continuous. A bounded map can be decomposed
as follows: Let U be a convex, circled, 0-neighborhood in E such that u(U) =
B, where B is convex, circled, and bounded in F; then u = {gzouyo ¢y,
where u, is the map in Z(E, Fg) induced by, . If, in addition, Fy is complete,
then u, has a continuous extension ii, € Z(Ey, Fy) for which u = Y o i1y o ¢y.
The definition is now this:

A linear map u of a l.c.s. E into another l.c.s. F is nuclear if there exists a
convex, circled 0-neighborhood U in E such that u(U) < B, where Bis bounded
with Fy complete, and such that the induced mapping i, is nuclear on Ej,
into Fp.

It follows at once that every continuous linear map of finite rank is nuclear;
Jnoreover, if u is nuclear in #(E, F), there exists a 0-neighborhood U in E
and a bounded, convex, circled subset of F for which Fj is complete, such that
u is the uniform limit on U of a sequence of maps of finite rank in L(E, Fp).
Hence for every &-topology on Z£(FE, F), the nuclear maps are contained in
the closure of E’® F (the latter being viewed as a subspace of Z(E, F)).
With the aid of Theorem (6.4), we obtain the following explicit characteriza-
tion of nuclear maps.
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71
A linear map u € % (E, F) is nuclear if and only if it is of the form

x> u() = 3 2afi 87w

[
where Y |A,| < + o0, {f,} is an equicontinuous sequence in E', and {y,} is a
n=1

sequence contained in a convex, circled, and bounded subset B of F for which
Fyg is complete.

Proof. The condition is necessary. For, if u is nuclear, then u =g o il o ¢y,
where i, is nuclear in £(Ey, Fj), U being a suitable 0-neighborhood in E,
and B being a suitable bounded subset of F for which Fj is complete. Hence
i1, originates from an element v of [Ey]' &® Fp, which is, by (6.4), of the

form v= ) A,h,® y, with Y |4,| < + co and where {h,} and {y,} are null
n=1 1

sequences in [Ey]’ and Fp, respectively. Define a sequence {f,} of linear forms
on E by setting f, = h, o ¢y. Since {A,} is a bounded sequence in [Ey]’, the
sequence {f,} is uniformly bounded on U and hence is equicontinuous. It is
clear now that the mapping u = Yz o 1(v) o ¢y is of the form indicated above.

The condition is sufficient. For if u is as indicated in the proposition, let

= {x e E:|f,(x)] £ 1, n e N}; U is convex and circled and is a 0-neighbor-
hood in E by the equicontinuity of {f,}. Defining A, (n € N) by f, = h, o ¢y
on Ey and subsequent extension to £y, we obtain ||4,|| < 1 for all n; evidently,

uo is the map £ — Z/I h,(£)y,. Since ZM | 141l Iyl converges, the series
Zl h, ® y, is absolutely convergent in [EU] ® Fy by (6.3) and its corollary,

and hence defines an element v € [E;]’ ® Fy; clearly, i, = 1(v), whence u is
nuclear.

REMARK. If u is of the form indicated in (7.1), we shall find it conven-
ient to write u = Y. 4,1, ® y,, keeping in mind that u is not, properly
1

speaking, an element of a topological tensor product. It follows then
from the first part of the proof that for nuclear u, there exists a rep-

)
resentation u = Y 4, f, ® y, such that { 1} is a sequence converging to
1

0 uniformly on a suitable 0-neighborhood U of E, and {y,} converges
to 0 in a suitable Banach space Fj; finally, (4,) €.

COROLLARY 1. Every nuclear map is compact.
Proof. Let u =Y A,f/,®y,and let U= {x € E: | f,(x)| £ 1, n € N}. In view
1
of the preceding remark, it can be assumed that {y,} is a null sequence in a

suitable space Fj and, in addition, that ) |4,| < 1. It follows that the image
1
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u(U) of the 0-neighborhood U is contained in the closed, convex, circled hull
C of the null sequence {y,} in Fg; since {y,} is relatively compact in Fy and
Fyis complete, C is compact in Fy (cf. (I, 5.2) and (II, 4.3)), and hence a for-
tiori compact in F by the continuity of Fy — F.

COROLLARY 2. Let E, F, G, H be l.c.s., let ue L(E, F), let we £(G, H),
and let v be a nuclear map on F into G. Then v o uand w o v (and hence w o v o u)
are nuclear maps.

Proof. 1t is evident from (7.1) that v o u is nuclear. By Corollary 1, there
exists a convex, circled 0-neighborhood V in F such that (V) = B is compact
in G. Thus B, = w(B) is compact in H, hence Hp, is complete. It is now clear
that w o v is nuclear in £(F, H).

COROLLARY 3. If ue ZL(E, F) is nuclear, then u has a unique extension
i € Z(E, F), where E is the completion of E, and  is nuclear.

Proof. The first of the stated properties is shared by u with all compact
maps on E into F. In fact, if U is a 0-neighborhood in E such that u(U) = C,
where C is compact, then since u is uniformly continuous, its restriction to U
has a unique continuous extension to U (the closure of U in E) with values in
C, since C is complete. It is immediately clear that this extension is the re-
striction to U of alinear map # of E into F which is compact, hence continuous;
that # is nuclear is a direct consequence of the definition of a nuclear map,
or of (7.1).

We are now ready to define a nuclear space. A locally convex space E is
nuclear if there exists a base B of convex, circled 0-neighborhoods in E such
that for each ¥ € B, the canonical mapping E — Ej, is nuclear.

It is at once clear from this definition and (7.1) that a l.c.s. E is nuclear if
and only if its completion E is nuclear. The space K¢ (d any cardinal) is a
first example of a nuclear space; in fact, for any convex, circled 0-neighbor-
hood V, the space E, = Ej, is of finite dimension; thus E — Ey, is of finite rank
and hence nuclear. Further and more interesting examples will be given
below and in Section 9, Chapter IV. Let us note, however, that a normed
space E cannot be nuclear unless it is of finite dimension; for if ¥ is a convex,
circled 0-neighborhood which is bounded, then E— E, is a topological
automorphism; hence if E — E is a nuclear map, it is compact by Corollary 1
above. Thus (I, 3.6) implies that F is finite-dimensional. We shall have use for
the following alternative characterizations of nuclear spaces.

72
Let E be a l.c.s. The following assertions are equivalent:

(@) E is nuclear.
(b) Every continuous linear map of E into any Banach space is nuclear.
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(¢) Each convex, circled 0-neighborhood U in E contains another, V, such
that the canonical map E, — Ey is nuclear.

Proof. (a) = (b): Let F be any Banach space and u € £(E, F). There exists
a convex, circled 0-neighborhood ¥ in E such that ¢: E — E, is nuclear, and
such that u(¥) is bounded in F. Since ¢,(F) = Ey,, u determines a unique
ve Z(Ey, F) such that u = v o ¢y, and it follows from Corollary 2 of (7.1)
that u is nuclear. (b) => (c) : Let U be any convex, circled 0-neighborhood in E.
By assumption, the canonical map E — E is nuclear, and hence of the form
du =Y Afy®y, as described in (7.1). Set V=Un {x:|f,(x)| £ 1,neN},
then ¥V < U is convex, circled, and a 0-neighborhood by the equicontinuity
of the sequence {f,}. Now each f, induces a continuous linear form (of norm
<1) on Ey. Denote by 4, its continuous extension to Ey: It is now trivial that
the canonical map ¢y y: E, — Ey is given by Y Ah, ® y,, and hence nuclear
by (7.1).

(c)=(a): If U is a given convex, circled 0-neighborhood in E, there exists
another, V, such that ¢y, is nuclear. Since ¢y = ¢y y © @y, it follows from
Corollary 2 of (7.1) that E — Ej is nuclear, whence E is a nuclear space by
definition.

COROLLARY 1. If E is a nuclear space, then E — Ey, is a nuclear map for every
convex, circled neighborhood V of 0 in E.

For E — Ey is continuous and Ej, is a Banach space.
COROLLARY 2. Every bounded subset of a nuclear space is precompact.

Proof. If B is a neighborhood base of 0 in E consisting of convex, circled
sets, then by Corollary 2 of (I, 5.4) E is isomorphic with a subspace of

T Ey by virtue of the mapping x — {¢y(x): ¥ € B}. This isomorphism car-
Ve
ries a bounded set B < E into the set [[¢,(B). Now if E is nuclear, each

#v(B) is precompact in Ey by Corollary 1 of (7.1). Thus the product [[¢,(B)
is precompact, which proves the assertion.

We recall the common usage to understand by /(1 < p < + o0)the Banach
space of all (real or complex) sequences x = (x;, X,, ...) whose pth powers are
(absolutely) summable, under the norm ||x||, = (} |x,|?)!/?; I® is the Banach
space of bounded sequences with ||x||,, = sup,|x,|.

The following result reveals the special structure of nuclear spaces.

7.3

Let E be a nuclear space, let U be a given 0-neighborhood in E, and let p be
a number such that 1 < p < 0. There exists a convex, circled 0-neighborhood
V < U for which Ey is (norm) isomorphic with a subspace of I”.

Proof. We show that there exists a continuous linear map v € (ZE, I?) such
that v™(B) = U, where B is the open unit ball of /#; ¥ = v~ !(B) will be the
neighborhood in question. Assume without loss of generality that U is convex
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and circled. The canonical map ¢y is nuclear by (7.2), Corollary 1, hence of
the form ¢y = Y 4,f, ® y,, where we can assumethat4, >0(neN), Y 1, =1,
n=1

|lyall = 1 in Ey (n € N) and that the sequence {f,} is equicontinuous. Define
v by

o(x) = (YA 11(x), YA fo(x), ...)

for all x € E (set {'//_1,, =1 for all »n if p = o©0). By the equicontinuity of the
sequence {f,}, we have v(x) € I” and evidently v € Z(E, I?). Nowletp~! + ¢~ *
=1(g=1if p=o and g = o if p =1) and apply Hélder’s inequality to

Y a,B, with a, = {’/I,,f,,(x), B, = </4,. Denoting by || || the norm in E,, we

n=1

obtain
”¢U(x)” = ” =Zlinfn(x)yn” é ; }'nlfn(x)] é “U(x)”p’

whence v~ '(B) < U. Letting ¥ = v~ !(B), the definition of v implies that E,
is norm isomorphic with »(E); hence E, is norm isomorphic with the closed
subspace v(E) of /7.

In the three corollaries that follow, denote by A a set whose cardinality
is the minimal cardinality of a neighborhood base of 0 in E.

COROLLARY 1. Let E be nuclear, and let {E,: o € A} be a family of Banach
spaces, each of which is isomorphic with a space I’(1 £ p < ©). There exist
linear maps f, of E into E, (x € A) such that the topology of E is the coarsest
topology for which all mappings f, are continuous.

In other words, the topology of FE is the projective topology with respect
to the family {(E,, f,): « € A} (Chapter 1I, Section 5). If we apply (7.3), with
p = 2, to each element U,(a € A) of a 0-neighborhood base in E, we obtain a
base {V,: « € A} of O-neighborhoods such that for each « € A, E, = E,_is
a Hilbert space (not necessarily of infinite dimension (cf. Chapter II, Section 2,
Example 5)). Now if E, is a Hilbert space, the norm of E, originates from a
positive definite Hermitian form (%, §) — [%, §], on E, x E,; hence if ¢,
denotes the canonical map E — E,, then (x, y) = [@.(x), d(»)], is a positive
semi-definite Hermitian form on E x E such that x — [¢,(x), ¢,(x)]? is the
gauge function p, of V,.

COROLLARY 2. In every nuclear space E there exists a 0-neighborhood base
{V,: o € A} such that for each o € A, Ey_is a Hilbert space; hence the topology
of E can be generated by a family of semi-norms, each of which originates from
a positive semi-definite Hermitian form on E X E.

Combining this result with the construction used in the proof of (II, 5.4),
we obtain a representation of nuclear spaces as dense subspaces of projective
limits of Hilbert spaces. Thus the completion of a nuclear space E is isomor-
phic with a projective limit of Hilbert spaces, and obviously nuclear by
Corollary 3 of (7.1).
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COROLLARY 3. Every complete nuclear space is isomorphic with the projective
limit of a suitable family (of cardinality card A) of Hilbert spaces. A Fréchet
space E is nuclear if and only if it is the projective limit of a sequence of Hilbert
spaces, E =(1i_111 GmnH, such that g, is a nuclear map whenever m < n.

Proof. We have only to prove the second assertion. If E is a nuclear (F)-
space, by Corollary 2 there exists a base {V,: n € N} at 0 which can be sup-
posed decreasing, and such that each E, is a Hilbert space. By (7.2)(c) we can
even suppose that each of the canonical maps ¢y, y,.,: E,+; = E, is nuc-
lear. The desired representation is then obtained with H, = E, and g, =
oy, v, (m = n). Conversely, if E is of the form indicated and V is a convex,
circled 0-neighborhood chosen from a suitable base in E, then E — E, can be
identified with the projection p of E into a finite product of spaces H,, say

[1 H;. Denoting by p, the projection of E into H, (n € N) we have p =
k=1

(P15 --s Pm)shence p = (g1, © Pus ---» Gun © D) fOr any n > m, which implies that
p is nuclear.

The following important theorem of permanence is also due to Grothen-
dieck (cf. [13], chap. II, theor. 9).

7.4

Theorem. Every subspace and every separated quotient space of a nuclear
space is nuclear. The product of an arbitrary family of nuclear spaces is nuclear,
and the locally convex direct sum of a countable family of nuclear spaces is a
nuclear space.

Before proving the theorem, we note the following immediate consequence :

COROLLARY. The projective limit of any family of nuclear spaces, and the
inductive limit of a countable family of nuclear spaces, are nuclear.

Proof of (7.4)
1. The proof for countable direct sums and arbitrary products will be based
on property (b) of (7.2). Let E = @ E;, E; (i € N) be nuclear spaces, and let u
i=1

be a continuous linear map of E into a given Banach space F. If u; is the
restriction of u to the subspace E; of E, u; is continuous and hence nuclear,
and thus of the form

u; = Zlﬂff’hﬁ” ® Yn,i (ieN).

Here we can assume that ||y, ;| < 1 in F for all (n,i) € N x N, that ) |u|
n=1

<i7%(i e N), and that each of the sequences {h{’: n € N} is equicontinuous
on E;. Let U, be a 0-neighborhood in E; such that |#{)(x;)| < 1 for all x; € U,
and all » e N, and define /».1 to be the continuous linear form on E which is
the -extension of A{) to E that vanishes on the complementary subspace



104 LINEAR MAPPINGS  [Ch. il

@ E;of E;. The family {f, ;: (n,i) € N x N} is equicontinuous, for if U is the

J#i
0-neighborhood [";U; in E, then x € U implies |f, (x)| < 1 for all n and i.
Since u can be written as

M8

u= lyfvl)fn,i ® yn,b

n,i

it follows from (7.1) that u is nuclear.

Let {E,: « € A} be any family of nuclear spaces, E = [[,E, and let u be a
continuous linear map of E into a given Banach space F. There exists a 0-
neighborhood V in E such that u(¥) is bounded in F, and by definition of the
product topology, ¥ contains a 0-neighborhood of the form V,, x --- x ¥V,
x T Eg. 1t follows that u vanishes on the subspace G = [] E; of E.

BFai n B#ai
Since E = [] E,,® G, it remains to show that the restriction of u to [[:E.,
i=1 n

is nuclear. But this is clear from the preceding proof, since @ E,, is
. n i=1
identical with [ E,, (Chapter II, Section 6).
i=1

2. The proof of nuclearity for subspaces and quotient spaces will be based
on property (c) of (7.2) and Corollary 1 of (7.3). Let E be a nuclear space and
let M be a subspace of E. For each convex, circled 0-neighborhood U in E, set
V=M n U. We show that for each V, there exists another such neighbor-
hood, ¥, = ¥, such that the canonical map M, — M, is nuclear. We can
assume without loss of generality that ¥ = M n U, where U is such that Ej,
is a Hilbert space. There exists a 0-neighborhood U; = U such that the
canonical map ¢y y,: Ey, » Ey is nuclear; let ¥; = M n U,. Now it is not
difficult to see that M, and M, can be identified with closed subspaces of
Ey, and Ey, respectively, so that the canonical map ¢ ,, is the restriction of

¢u.u, to My, (Exercise 3). But ¢y y, is of the form Y. 4;f; ® y; with {4;} sum-
i=1

mable, {f;} equicontinuous in [Ey,]’, and {y;} bounded in E;. Denote by p the
orthogonal projection of Ej onto My, let w; = py;, and denote by g, the restric-
tion of f; to My, (i € N). Then {g;} is equicontinuous, {w,} is bounded in M,

and ¢y y, necessarily of the form ) 1,9, ® w;, and hence nuclear by (7.1).
i=1

We employ the same pattern of proof for quotient spaces: Let E be nuclear,
let M be a closed subspace of E, F= E/M (topological), and let ¢ be the
canonical map E — F. For a given convex, circled 0-neighborhood V in F, we
show the existence of another, ¥; < V¥, such that ¢ ,,: Fy, - Fy is nuclear.
For this we can suppose that ¥V = ¢(U), Ey is a Hilbert space, and U, < U is
such that Ey, is a Hilbert space and ¢y y,: Ey, — Ey is nuclear. The point of
the proof consists now in recognizing that F, can be identified with a quotient
space of Ey,. In fact, F, is isomorphic with the space E,/L, where L is the clo-
sure of ¢y(M) in Ey. Similarly, letting V; = ¢(U,), Fy, can be identified with
Ey /L, where L, is the closure of ¢, (M) in Ey, (Exercise 3).
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We note further that ¢y y, maps L, into L, and ¢y y, is nothing else but the
map of Ey /L, into Ey/L induced by ¢y y, under the identification just made.

Since ¢y y, is nuclear, it is of the form Z A:f; ® y; as described in (7.1).

We decompose Ey, =L, ®Ly, E;=L eaLl (orthogonal complements).
Let f; =f + f/ and y; = y; + y{ (i € N) be the corresponding decompositions
(so that, for f;, we have f(Ly) = f7(L,) = {0}). Since ¢y, maps L, into L,
it follows that Y ;4,f; ® y; vanishes on Ey, whence,

buu, = .Zl'lifi ®yi+ Z,I/li i ® i

If now g; denotes the linear form on Ey, /L, determined by f;”, and w; denotes
the equivalence class of y; mod L (i € N), then ¢y, ;,, (being the map induced
by ¢y,u,) is of the form Y A,g; ® w;, and hence is nuclear by (7.1).

The proof of the theorem is complete.

We supplement theorem (7.4) by showing that the projective tensor product
of two nuclear spaces is nuclear. To this end, we need the concept of the
tensor product of two linear mappings: Let E, F, G, H be vector spaces over
K and u e L(E, G), v € L(F, H). The mapping (x, y) — u(x) ® v(y) is bilinear
on F x Finto G ® H; the linear mapping of E® F into G ® H, which corres-

- ponds to the former, is denoted by u ® v, and is called the tensor product of u
and v. It is obvious that (¥, v) > u ® v is bilinear on L(E, G) x L(F, H) into
L(E® F, G® H). Thus again by (6.1), to this map there corresponds a
linear map of L(E, G) ® L(F, H) into L(E® F, G ® H) (called the canonical
imbedding), which is an isomorphism. If G = H = K, that is, if u=f, v =g
are linear forms, then tensor multiplication in K, ® K, can be identified with
ordinary multiplication in K (proof!) and we have f® g(x ® y) = f(x)g(»)
so that the tensor products f® g and E* ® F* considered earlier are special
cases of the present definition.

7.5

If E and F are nuclear spaces, the projective tensor product of E and F, as well
as its completion E & F, are nuclear.

Proof. Let U, V be convex, circled 0-neighborhoods in E, F respectively;
setG=E® Fand W= ['U® VinG.Itis clear from (6.3) that G, is identical
with the normed space (Ey ® Fy, r), where r is the tensor product of the re-
spective norms of Ey and Fy,. Hence if ¢y, ¢, ¢ denote the respective can-
onical maps E— Ey, F— F,, G— Gy, we have ¢, = ¢y ® ¢y. Since E, F
are nuclear, (7.1) implies that ¢y =Y A,/ ® £;, ¢y = Y 1,9, @ 9;, where {4},
{u;}, etc., have the properties enumerated in (7.1). For x € E, y € F we have by
definition

#0® bu(x® ) = ( T 4A12) @ % wa,009,),
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which, as an element of Gy, = E; ® Fy, can be written

S ®9) = 3 Jf(Xg,00 @ 9).

i,j=
so that ¢y is represented by Y Au(f;®9,) @ (£;® 9;). Now {Au;: (i, ))
i

€ N x N}isasummable family, { f, ® g;} is an equicontinuous family (namely,
uniformly bounded on ["U; ® V, for suitable 0-neighborhoods U,, V; in E, F,
respectively), and, clearly, the family {£; ® §;} is bounded in G}, because of
IIX; ® 9;1l =%l I9;]l. Hence ¢y, is nuclear for each element W of a 0-neigh-
borhood base of the projective topology on E ® F. The nuclearity of E & Fis
immediate from (7.1), Corollary 3.

8. EXAMPLES OF NUCLEAR SPACES

1. Let T be the k-dimensional torus. The space 2, of (real- or
complex-valued) infinitely differentiable functions on 7, endowed with
the topology of uniform convergence in all derivatives, is a nuclear
(F)-space. By (7.4) this implies that the space 9; of infinitely differen-
tiable functions on R¥, whose support is contained in the k-dimensional
interval 7, is nuclear (notation as in Chapter II, Section 6, Example 2,
except that the domain is sometimes written in parentheses). For 9,
can be identified with a subspace of 2, by considering each fe 2, as
a k-fold periodic function on I. The method of proof will be sufficiently
exhibited by considering the case k = 1.

Denote by g (k =0, +1, +2, ...) the normalized trigonometric func-

tions g,(¢) = 2n) ¥ e, and set [, g,] = ff f@gk@)dtforfe Dr. It is
well known from elementary analysis that f has a Fourier expan-
sion f = 3 ,a,9, that converges to f uniformly in all derivatives; that is,

f= a9, is an expression valid in 2. The coefficients are given by
a, = [f, g.], and by repeated partial integration it follows that

a,=Lf 9] = (ik)—m[f(m), 9il

for all k= +1, +2, ... and all integers m = 0, /™ denoting the mth
derivative of f. The family of norms f— p,(f) = sup{|f™(@)|: t € T,
m = n} generates the topology of 2, and the 0-neighborhoods
V,={f:pf) <n"'} where neN form a base at 0. Note also that
each of the spaces E,, is algebraically isomorphic with E= 2,
since the p, are norms. For fixed »n, say n.= m, the expansion of f can
be written

f=Lf90]90 —kgok—z[f(m”), 9 J(ik) " "gy.

Now the linear forms f— h(f) = [f™*?,g,] (k= £1, £2,...) are
uniformly bounded on V,,,, and hence are equicontinuous, and the
functions y, = (ik) "™g, (k = =1, £2, ...) can be arranged to form a
bounded sequence in Ey,. Hence the canonical map E — E, ., being
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of the form

f=Lf 90190 — Z k_zhk(f)yh
K#0

is nuclear. Since m € N was arbitrary, 2 is nuclear as asserted.

The same conclusion holds if C is any compact subset of R (and more
generally, of R¥), for then C is contained in an interval I as considered
above, and 9. is a closed subspace of 2, hence nuclear by (7.4).

2. The space 2 of L. Schwartz (Chapter II, Section 6, Example 2),
being the inductive limit of a sequence of spaces 9, is nuclear by the
corollary of (7.4).

3. Let & be the space of infinitely differentiable complex functions
on R* (with no restrictions on their supports), under the topology of
compact convergence in all derivatives. Let {C,} be an increasing
sequence of convex compact sets with non-empty interior in R* such
that |),C, = R*. Then each compact set C = R* is contained in some
C,, and the topology of & is generated by the semi-norms

f = plf) =sup{ID"f()]: teC,,m=n} (neN)

where | D™f(¢)| stands for the sum of the absolute values (at ) of all
derivatives of f that have order m (= 0). As 9, & is an (F)-space which
is nuclear. We shall not verify the nuclearity of & directly, since it
will be a consequence of (IV, 9.7).

4. Let A#(C) be the space of all entire functions of one complex
variable under the topology of compact convergence. 1t is clear from the
elements of complex function theory that s#(C) is an (F)-space; more-
over, by a classical theorem of Weierstrass, #(C) is not only alge-
braically, but also topologically, a closed subspace of &(R?). Hence by
Example 3 and (7.4), #(C) is nuclear.

5. The space & (cf. L. Schwartz [2], chap. VII, §3), or S(R"),
is (algebraically) defined to be the subspace of &(R¥) such that lim

[t] = @

[¢|"D"f(t) =0 for any derivative of f of any order » and any integer
k
m € N, with |¢| = [ ¥ t]* denoting the Euclidean norm of t = (¢,, ..., #;)
i=1 :

€ R*. The topology of & is defined by the sequence of semi-norms
S = () =sup{(1 + [t|)D"f(®)I: |t| < n, m < n}

(neN). & is an (F)-space, called the space of rapidly decreasing,
infinitely differentiable functions on R*. The space & is nuclear. This
can be proved directly by applying the method used in Example 1 to
the expansion of /'€ & by the functions of Hermite (cf. L. Schwartz [2],
vol. II, p. 117). Another proof uses the fact that &(R¥) is.isomorphic
with a closed subspace of 2(S*)(l.c. p. 91), where 2(S¥) is‘the space of
infinitely differentiable functions on the k-sphere S*. For k =1, the
nuclearity of 2(S') was shown in Example 1; for k > 1, one can use
expansions by spherical functions.
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In Examples 1,2, and 3 R* can be replaced by an open subset of R* or,
more generally, by an infinitely differentiable manifold, and C by an open
subset in Example 4. Further examples will be obtained in Chapter IV, Sec-
tion 9. For examples of nuclear sequence spaces, see Exercise 25.

9. THE APPROXIMATION PROPERTY. COMPACT MAPS

Let H be a Hilbert space. If {x,: « € A} is an orthonormal basis of H
(Chapter 1II, Section 2, Example 5), if [, ] is the inner product of H, and if
f(x € A) is the continuous linear form on H for which f(x) = [x, x,], then it
is known and easy to prove that for each x € H the family {f,(x)x,: « € A} is
summable to x (for the definition of summability in H, see Exercise 23):

x = a;Afa(x)xa-

The convergence of this sum can be interpreted in the following way : If for
each finite subset ® = A, we denote by u, the linear map x - ) ,.o/x(*)x,
(that is, if up = ) ze0fy ® X,), then {uy} converges pointwise to the identity
map e of H, the convergence being along the family of finite subsets of A
directed by inclusion —. Now since each u4, being an orthogonal projection,
is (if ® # &) of norm 1 in £ (H), it follows from (4.6) that the convergence of
{ug} is uniform on every compact subset of H. [We write £(F) = £(E, E) and
endow, for any pair of normed spaces E, F, the space Z(E, F) with the stan-
dard norm u — |ju| = sup{[u(x)|: |Ix|| = 1}.]

This implies that for every Hilbert space H, the identity map e is in the clo-
sure of H' ® H = ¥(H) for the topology of precompact convergence. It can
be shown (Karlin [2]) that even a separable Banach space does not, in general,
contain an unconditional basis (see below), i.e., a sequence {x,} for which
there exists a sequence {f,} = E’ satisfying f,(x,) = J,.,, (m, n € N), and such
that {f,(x)x, : n € N} is summable to x for all xe E. A lc.s. E is said to
have the approximation property (a.p.) if its identity map e can be approxi-
mated, uniformly on precompact sets, by continuous linear maps of finite
rank. (This property is characterized in 9.1 below.) It had long been an open
question (approximation problem) if every l.c.s. has the a.p.; Enflo [1] gave
a negative answer by constructing a sophisticated example of a separable
(B)-space not having the a.p. (For detailed information we refer the reader
to Lindenstrauss-Tzafriri [1], [2].) In what follows we denote the topology
of precompact convergence by a subscript “c”.

9.1

Let E be any locally convex space with dual E’. The following properties of E
are equivalent:

(@) The closure of E' ® E in £ (E) contains the identity map e.
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(b) E' ® E is dense in & (E).
(c) For every l.c.s. F, E' ® F is dense in & (E, F).
(d) For every l.c.s. F, F' ® E is dense in & (F, E).

Proof. (a) = (b): Given a u € Z(F), a precompact set 4, and a 0-neighbor-
hood ¥V in E, we have to show the existence of #, € E' ® E such that u(x) —
uy(x) € V for all x € A. Let U be a 0-neighborhood in E for which w(U) = V.
By (a) there exists an e, € E'® E such that x —eq(x) € U for all x € 4.

Clearly, if e, = ) x; ® x;, then the map uy =uoe, =) x; @ u(x,) satisfies
1 1

the requirement.

(b) = (c): For each fixed v € £(FE, F) the mapping u — v o u is continuous
on Z(FE) into £ (E, F). Thus since £’ ® E is dense in .Z(E), E' ® v(E) is
dense in a subspace of Z(E, F) containing v - e = v, which establishes the
assertion.

(b) = (d): Likewise, for each fixed w € £(F, E), u — u o w is continuous on
£ (F)into & (F, E), since for each precompact set B = F, w(B) is precompact
in E (for w is uniformly continuous). It follows that w is in the closure .of the
subspace (E' ® E) o w of £ (F, E), and it is quickly seen that (E' @ E) o w <
F' ®E.

Finally, the implications (d) = (b), (c) = (b), and (b) =>(a) are trivial.

The following result reduces the approximation problem entirely to Banach
spaces. Besides, it gives a positive answer for a large class of locally convex
spaces (including all nuclear spaces).

9.2

Let E be a l.c.s. with a O-neighborhood base B of convex, circled sets such that
for each V€ B, E, has the approximation property. Then E possesses the
approximation property.

Proof. Let V € B be given, and denote by ¢ the canonical map E — E, = F.

Let W = }¢(V), where the closure is taken in F. It follows that ¢ (W) <

1V + Vo< Vif Vo= () AV denotes the null space of V. Note further that
A>0 :

Ey, = ¢(E) is dense in F. Since F has the a.p. by assumption, (9.1)(d) implies
that E’ ® Fis dense in £ (E, F), whence E’' ® ¢(E) is also dense in £ (E, F).
Hence, ¢ being in Z(E, F), for a given precompact set 4 < E there exists

we E' ® ¢(E)such that w(x) — ¢(x) e Wforallx e 4. Let w = i x; @ ¢(x;).

It follows that qb[Zx {(x)x; — x] € W hence (since ¢ ~{(W) = V) Z xX(X)x; — x

e Vfor all x € A4. Thls proves the assertion, since V was any member of a
neighborhood base of 0 in E.

COROLLARY 1. Every subspace of an arbitrary product of Hilbert spaces
possesses the approximation property.
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Proof. Let E =[] H, be a product of Hilbert spaces. There exists a 0-

acA
neighborhood base B in E such that for each V e B, E, is isomorphic with

the Hilbert space [ [ H,, where @ is a suitable finite subset of A; thus E, has

ae®

the a.p. If M is a subspace of E and W = M n V (V € B), then My, can be
identified with the closure of ¢, (M) in E, (Exercise 3); hence My, is a Hilbert
space if E, is.

COROLLARY 2. Every projective limit of Hilbert spaces and every subspace of
such a projective limit (in particular, every nuclear space) has the approximation
property.

This is an immediate consequence of Corollary 1 and (7.3), Corollary 2.

COROLLARY 3. If there exists a locally convex space not having the a.p., then
there exists a Banach space not having the a.p.

In view of the last corollary, we shall analyze the approximation problem
for Banach spaces somewhat further. For this we need several results on
compact maps and sets. Since these results are also of independent interest,
they will be proved in detail. We denote by a subscript ““ 5"’ the topology of
bounded convergence on Z(E, F); recall (Section 3) that when E, F are
normed spaces, this is the topology of the normed space Z(E, F).

9.3

Let E be normed and let F be a quasi-complete l.c.s.; the set of all compact
linear maps of E into F is a closed subspace of £ ,(E, F).

Proof. The subset of £(E, F) consisting of all compact maps is evidently
a subspace M. Let us show that M is closed. Letv e M = Z,(E, F) and a 0-
neighborhood V in F be given, let W be a circled 0-neighborhood in F such
that W + W + W < V, and denote by U the unit ball of E. There exists u € M
such that v(x) — u(x) € W for all x € U, and since u is compact, u(U) is rela-
tively compact, so that w(U) = J(b; + W) for a suitable finite subset {b;} of
u(U). Since W is circled, it follows that w(U) < w(U) + W, whence b, ea; + W
(i=1, ..., n) for a suitable subset {a;} of v(U). Now

v(U)cu(U)+WcL")(bi+W+W)cL:)(ai+V),
1

which shows v(U) to be precompact, and hence relatively compact, since F is
quasi-complete.

REMARK. The preceding proof shows that if E, F are t.v.s., F is
separated and quasi-complete, and v is the limit of compact maps, uni-
formly on some non-empty open subset of E (or even on a non-meager
subset of E if E is a Baire space), then v is compact.
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Although the study of adjoint maps is deferred to Chapter IV (Sections 2
and 7), since it can be handled successfully only with the aid of duality, we
shall make use in what follows of a few elementary facts with which the
reader is likely to be familiar. Recall that if E, F are normed spaces and if
E’', F’ are the Banach spaces that are their respective strong duals, then every
ue #(E,F) induces a ve L(F,E) by means of y' —»v())=y ou. It
is immediate that for all xe E, y' € F' [v(y")[x]| £ II)'Il llu] |lx]l, whence
lv]l £ |lu||. An application of the Hahn-Banach theorem (in its analytical form
(I1, 3.2)) then shows that ||v|| = |ju]|. v is called the adjoint of #, and denoted
by ’. The following result is due to Schauder.

9.4

Let E, F be normed spaces and let F be complete. A linear map u € ¥ (E, F) is
compact if and only if its adjoint u' € L(F', E') is compact.

Proof. Let U, V be the respective unit balls in E, F andlet U°, ¥° be the cor-
responding dual unit balls in £’, F'. We show that «'(V'°®) = B is relatively
compact in E’. For this it suffices (since E’ is metric) to show that each
sequence {x,} < Bhasa cluster point. Let x; = u’(y,)(n € N), where{y.} < V°.
Since V° is equicontinuous and closed for a(F’, F), it is o(F’, F)-compact
by (4.3), Corollary. Hence {y,} has a weak cluster point y’ which, by (4.5),
is also a cluster point for the topology of compact convergence. Thus if 4 =
u(U) is relatively compact (i.e., if u is compact), there exist infinitely many
k € N such that |y (ux) — y'(ux)| < ¢ for all xe U and a given & > 0. Let
z' =u'(y"). It follows that |[u'(y;) — u'()')| = |xk — z|| £ & for the same k,
which shows z’ to be a cluster point of the sequence {x,}. The converse is clear,
since if &’ is compact, then u” is compact in Z(E”, F”) by the preceding, and u
is the restriction of #” to the subspace E of E”.

We further need the following lemma which, as an inspection of the proof
shows, is actually valid in (F)-spaces. We shall confine ourselves to (B)-spaces
for convenience, in particular since the first assertion will be obtained for
(F)-spaces in a different context (IV, 6.3, Corollary 1).

LEMMA 1. Let A be a compact subset of the Banach space E. There exists a
null sequence {x,} in E whose closed, convex, circled hull contains A; and there
exists a compact, convex, circled subset B of E such that A is compact as a
subset of Eg.

Proof. Let {4,} be a sequence of positive numbers such that )" 1, = 1, and put
1
&, = AZ 1. Denote by P, (i € N) a finite subset of A(# ) such that for x € 4,
there exists y € P; satisfying ||x — y|| < ¢;; clearly, |J P;is dense in 4. We define
1

a sequence {Q;} of finite subsets of E, as follows: Let Q, be the set A7 'P,.
If i > 1, select for each y € P; an element z € P;_, satisfying |y — z|| < ¢

i—-1»
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and form x = (y — 2)/4;; the resulting set (which has the same number of
elements as P;) is Q;. Since each element of Q;is of norm < 4; wheni > 1, the
sequence {Q,, Q,, ...} defines a null sequence {x,:n e N} such that, say,
X, € Q; exactly when n; < n < n;. It is now readily seen that each y € P, is

oo}
of the form y = A4;x; + --- + A4x; and hence in the convex hull of {J Q;,
which proves the first assertion. 1

To prove the second assertion, it is certainly legitimate to assume A is
convex (since E is complete), and even that 4 is the closed, convex hull of the
range Q of a suitable null sequence {x,: n € N} in E. Notice that there exists
a sequence {o,:n€ N} of positive numbers such that o,— + co and
{o,x,: n € N} is still a null sequence in E; it suffices, for example, to take
o, = 1/3/Tx, 1 if x, # 0, &, = n if x, = 0 (n € N). Let B be the closed, convex,
circled hull of the range of {a,x,: n € N}; B is compact. It is clear that {x,}
is a null sequence in Eg; for if p is the gauge of B, then pg(a,x,) < 1, whence
pa(x,) £ a;* for all n e N. To show that 4 is compact in Ey denote by 4,
the closed, convex hull of Q in Eg; A4, is compact in Ey and, as a subset of E,
dense in 4. But since Ez— E is continuous, 4, is a fortiori compact in E,
and hence identical with 4. The lemma is proved.

The results established so far are not quite sufficient to prove (9.5) below;
we shall have to use Proposition (IV, 1.2) in two places, and Lemma 2, below.
To be sure, Lemma 2 is an easy consequence of (IV, 2.3), Corollary 1, and
(IV, 3.3), but we shall give a direct proof which involves only the geometrical
form (II, 3.1) of the Hahn-Banach theorem. For a full understanding of (9.5)
the reader is advised to defer reading its proof until he is familiar with the
material contained in the first three sections of Chapter IV.

LEMMA 2. Let (E, T) be a l.c.s., B # f a compact, convex, circled subset of E,
let Q be the subspace of [Eg] whose elements are continuous for the topology
induced by T, and let B® be the unit ball of [Ep]'. Then Q n B° is dense in B® for
the topology of uniform convergence on all compact subsets of Ep.

Proof. By (4.5) it suffices to show that Q n B° is dense in B° for the topology
of simple convergence. Let ' € B®, ¢ >0 and y;€e B(i=1, ..., n) be given.
We can assume that y'(y;) # O for some i. Denote by M the finite dimensional
subspace of Ez (and of E) generated by the y;(i =1, ...,n); Hy = {xeM:y'(x) =
1 + &} is a hyperplane in M and a linear manifold in E, not intersecting B.
Since B is compact, there exists a convex, open set ¥ in E containing B and not
intersecting H,. By (II, 3.1) there exists a closed hyperplane H in E containing
H, and not intersecting V, say, H = {x € E: x'(x) = 1}. Since H n B=(J,
the element of Q which x’ defines is in B°. Moreover, H n M = H,, whence
for x e M, y'(x) = (1 +¢&)x'(x), which implies |y'(y;) — x'(y;)| < ¢ for all i,
since y; € B.

We can now establish the following theorem (Grothendieck [13]) on the
a.p. of Banach spaces and their strong duals.
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9.5

Theorem. Let E be a Banach space and let E' be its strong dual. Consider
the following assertions:

(a) E has the approximation property.
(b) For every Banach space F, the closure of F' @ E in ¥ (F, E) is identical
with the space of compact maps in ¥(F, E).
(c) E’ has the approximation property.
(d) For every Banach space F, the closure of E' ® F in & (E, F) is identical
with the space of compact maps in ¥(E, F).
Then (a) <> (b) and (c) < (d).

REMARK. Assertion (a) is also equivalent to the following: (a’) The
canonical map of E'® E into Z(E) is one-to—one. With the aid of the
equivalence (a)<>(a’), it can also be shown that (c)=(a); but the
proofs require further results on duality. The interested reader is referred
to Chapter IV, Exercise 30.

Proof of (9.5). (a)=(b): If w e Z(F, E) is compact and V is the unit ball
of F, then A =w(V) is precompact in E. Thus there exists e, € E’ ® E such
that, given ¢ > 0, |leg(x) — x|| < ¢ for all x € 4. Thus |w, — w| < ¢, where
Wo = €q o w. Since w, is an element of F’ @ E (namely, Y w'(x) ® x; if e =
Y 'x; ® x;), the implication is proved.

(b) = (a): Given ¢ > 0 and a compact subset 4 = E, we show the existence
of ey € E' ® E satisfying |leg(x) — x|| < € for x € A. By Lemma 1 above, there
exists a compact, convex, circled subset B = E such that 4 < B and 4 is
compact in Ep. Letting F =Ej, (b) implies that there exists w, € [Ez] ® E
such that |lw, — /3|l < €/2, for the canonical map V5 is a compact map of Eg
into E. Since by Lemma 2 each y’ € [Eg]’ can be approximated, uniformly on
A, by elements x’ € E’, it follows that |leg(x) — wo(x)| <é&/2 for all x € 4 and
a suitable e, € E’ ® E, which implies, by (9.1)(a), that E has the a.p.

(c)=(d): Let u € Z(E, F) be a compact map. If we imbed, as usual, E and
F as subspaces of their strong biduals E” and F” respectively, then the second
adjoint ¥” € L(E", F") is an extension of u. Now the unit ball U of E is o(E”,
E’)-dense in the unit ball U of E”. We obtain this result by applying Lemma
2 to the weak dual E, = (E’, o(E’, E)) of E, substituting for B the unit ball
U° of the strong dual £’ and using the fact that, by virtue of (IV, 1.2), Eis to
be substituted for Q. It is an easy matter to verify that #” is continuous for
o(E", E’) and o(F", F'). On the other hand, since u is compact, u(U) is con-
tained in a compact (hence a fortiori o(F, F')-compact) subset C of F; hence
it follows that #”(U) < C, which implies that #"(E”) < F. (This is also a special
case of Chapter 1V, Section 9, Lemma 1.)

Now by (9.4), u’ € Z(F’, E') is compact; that is, the image under «’ of the
unit ball of F’is contained in a compact subset 4 of E’. Since E’ has the a.p.
by hypothesis, there exists a mapping v, = Y f; ® x; € E” ® E’ such that, ¢ > 0
being preassigned, we have ||x" —) f(x)x}|| < e forall x' € 4. Now vy o ' =
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Y(fiou')®@x; and we have f;ou' = u'(f;) = y; € E by the preceding. This
implies [[u’ — ) y; ® x{|| <& and, therefore, |u — )Y x;® y;| <e. In view of
(9.3) the implication is proved.

(d)=(c): Let 4 be any compact, convex, circled subset of E’; 4 is norm
bounded, hence equicontinuous, and it follows that U={x € E: |x'(x)| £ 1
for all x" € A} is a convex, circled 0-neighborhood in E. Using the fact that
the dual of (E’, o(E’, E)) can be identified with E, (IV, 1.2), it is quickly verified
by an application of the Hahn-Banach theorem that [E’], can be identified
with the strong dual of £y and that under this identification y, is the adjoint
map of ¢, (Exercise 3). Since ¥, is compact, so is ¢y by (9.4). Hence (d)
implies that, given e > 0, there exists an element we E'® E, satisfying
lw— ¢yl <e/2. Since ¢y(E) is dense in Ey, there exists w, € E' ® ¢y(E)
such that |[w, — ¢yl < e. Let wy = Y x} ® ¢y(x;). It follows that [jwy — v 4|
< ¢ or, equivalently, that

Ix" = x'Cexill <&
whenever x’ € 4; this shows that E’ has the a.p.

This completes the proof of (9.5).

When E, F are normed spaces and W, V° are the respective unit balls of
the Banach spaces E”, F’, then the topology of bi-equicontinuous convergence
on E’'® F is the topology of uniform convergence on W ® ¥V°, and hence
normable. It is not hard to see (Exercise 24) that the natural norm for this
topology is identical with the norm induced by Z(E, F). Hence the following
corollary:

COROLLARY. Let E be a Banach space whose strong dual E' has the approxi-
mation property. Then for every Banach space F, the canonical imbedding of the

Banach space E' ® F into £(E, F) is a norm isomorphism onto the subspace of
compact linear maps of E into F.

For separable (B)-spaces, a stronger form of the approximation property
is obtained as follows: A sequence {x,} = E is called a Schauder basis if each
x € E has a unique representation

)
X = Z Xy
n=1

where the series converges in E (in the ordinary sense that its partial sums
n

Y ax, converge to x as n — o ; cf. Exercise 23). For example, the sequence
1

{e,} (e, being the vector x = (xq, x,, ...) for which x,=1, x,, =0 when
m # n) constitutes a Schauder basis in each of the spaces /°(1 < p < «) and
¢, (the space of null sequences under the sup-norm); bases for most standard
(B)-spaces were constructed by Schauder [1]. We call a Schauder basis
normalized if each of its members has norm 1. Clearly, every Schauder basis
can be normalized. It is immediate from the postulated unicity of the rep-
resentation of x by a Schauder basis that the maps x — o, (n € N) are linear
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forms. The following stronger result, a beautiful application of the Banach-
Steinhaus and the homomorphism theorem, was essentially known to Banach

[1].
9.6

If {x,} is a normalized Schauder basis of the Banach space E, then the co-
efficient forms x — a, (n € N) are equicontinuous linear forms f, on E, and the
expansion x =y, f,(X)x, converges uniformly on every compact subset of E.

n

Proof. Letting ||x||; = sup, || Y. ox;|l, x = |Ix|l; is a new norm on E under
k=1

which E is complete. Since ||x| < ||x||;, the new norm also generates the
topology of E by Corollary 2 of (2.1). It follows that there exists a number
C = 1 such that ||x||; < C|x| for all x € E (cf. Chapter II, Exercise 5). Now

for each ne N,
n+1

ol = oyl = 1'%, oy = ¥, ooxll < 20l 21,

which implies that x — o, = f,(x) are equicontinuous linear forms. The
remainder is immediate from (4.6).

COROLLARY. Every (separable) (B)-space that contains a Schauder basis
possesses the approximation property.

This is immediate since (9.6) implies that e = ) f, ® x,, where the series
1

converges in &£ (E). The preceding considerations can be carried over to
separable (F)-spaces without difficulty. For an enlightening discussion of bases
in the framework of separable barreled spaces, see Dieudonné [8]. The
question if every separable (B)-space has a Schauder basis used to be called
the basis problem; like the approximation problem, it was answered nega-
tively by Enflo [1]. Note that a Schauder basis need not be unconditional,
i.e., such that for each x, {f,(x)x,: n € N} is summable to x (cf. Exercise 23
for notation); the result is due to Karlin [2]. For the many ramifications of
the basis problem in (B)-spaces, we refer to Day [2].

EXERCISES

1. Let L, M be Hausdorff t.v.s., let L, be a dense subspace of L, and
let  be a continuous linear map of L into M whose restriction u#, to L,
is a topological homomorphism; then u is a topological homomorphism.
In particular, if u is a topological homomorphism of L into M, and #
is its continuous extension to the completion L with values in M, then
it is a topological homomorphism. [Note that, in general, #(L) # M
even if u(L) = M; cf. Exercise 2, below, and Chapter IV, Exercise 11].

2. Let L be a metrizable t.v.s. and let NV be a closed subspace of L;
Show that the completion (L/N)~ is isomorphic (norm isomorphic
if L is normed) with L/N, where N is the closure of N in L. (By the
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method used in the proof of (I, 6.3), show that #(L) = (L/N)~ and
that N = #~!(0), where u denotes the quotient map L — L/N.)

3. Let E be a vector space, let M be a subspace of E, and let U be a
radial, convex, circled subset of E. Denote by ¢ the canonical map of
E into Ey. (For notation see the beginning of Section 7.)

(a) If V' =U n M, there exists a natural norm isomorphism of M,
onto the subspace ¢y(M) of Ey.

(b) Let ¢ be the quotient map E — E/M and set W = ¢(U). There
exists a natural norm isomorphism of (E/M)y onto Ey/N, where N is
the closure of ¢y(M) in the normed space Ey.

(c) In addition to the hypotheses above, suppose that E is a l.c.s.
and that U is a 0-neighborhood in E. Let B be the set of all x’ € E’ such
that |x'(x)| < 1 whenever x € U. There exists a natural norm isomor-
phism of the strong dual of Ey (or of the strong dual of £y) onto [E'];.

4. Let E(T,) be a l.c.s. such that I, is the inductive topology with
respect to a family {(E,, g,): @ € A}, where all E, are Banach spaces and
such that E = |,g,(E,) (e.g., let E(T,) be a quasi-complete bornological
space, (II, 8.4)). Let F(T,) be a l.c.s. such that T, is the inductive topol-
ogy with respect to a sequence {(F,, h,): n € N}, where all F, are Fréchet
spaces and such that F = {J,h,(F,). Generalize (2.2) as follows:

(a) If v is a linear map of F onto E which is continuous, then v is a
topological homomorphism.

(b) If u is a linear map of E into F with closed graph, then u is
continuous.

(For a proof, see Grothendieck [13], Intro., theor. B.)

5. Let Ebe a t.v.s. over K and let F be a Hausdorff t.v.s. over K.

(a) If E, denotes the Hausdorff t.v.s. associated with E, and ¢ the
canonical map E — E,, show that y: u —» u o ¢ is an (algebraic) isomor-
phism of Z(E,, F) onto Z(E, F); if © is a family of bounded subsets
of Eand S, = ¢(S), then y is a (topological) isomorphism of £ ¢ (E,, F)
onto & «(E, F).

(b) Suppose that E is Hausdorff, F is complete, and £ is the comple-
tion of E. For each u € Z(E, F) denote by & the continuous extension
of u to E u— i is an isomorphism of #(E, F) onto Z(E, F), which is
topological for the S-topology and the &-topology, respectively, if
for a family & of bounded subsets of E, € denotes the family of their
closures in E.

(¢) The isomorphism u — # maps the respective families of equicon-
tinuous subsets onto each other. If € is a total family of precompact
subsets of E, this correspondence H — H, induces a set of homeo-
morphisms (and even uniform isomorphisms). (Use (4.5).)

6. Let E be a vector space over K, let {E,: « € A} be a family of
l.c.s. over K, and let {g,: « € A} be a family of linear maps of E, into
E, respectively, such that E = (J,g(E,). Denote by S, (x € A) a total
family of bounded subsets of E,. Let S = |J,9.(S,), provide E with the
inductive topology with respect to the class {(E,, g,): « € A}, and let F
be any l.c.s. The S-topology on Z(E, F) is the projective topology with
respect to the mappings u — u o g, of Z(E, F) into & s (E,, F) (x € A).
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Deduce from this that if E = @ E,, then & ¢(E, F) is isomorphic with
I1.% s (E, F).

7. Let E, F bel.c.s. such that F # {0}, and let S, and S, be saturated
families of bounded subsets of E with €, =&,. If S, # &,, the S,-
topology is strictly finer than the S;-topology on Z(E, F). Deduce from
this that, under the conditions stated, the family of S-topologies on
Z(E, F) is in biunivocal correspondence with the saturated families of
bounded subsets of E.

8. Let E be a bornological space, and let S be a family of bounded
subsets of E such that the range of each null sequence in E is con-
tained in some S € S. Show that if F is a quasi-complete (respectively,
complete) l.c.s., then £ g(E, F) is quasi-complete (respectively, com-
plete). (Use (8.3) and Exercise 17, Chapter II.)

9. (Theorem of Osgood). Let X be a non-empty topological space
which is a Baire space.

(a) Let {f,} be a pointwise convergent sequence of continuous func-
tions on X with values in a metric space Y; the set of points where the
sequence is equicontinuous is not meager in X.

(b) Let {f,} be a simply bounded sequence of continuous functions
with values in F, where F is a t.v.s. possessing a fundamental sequence
of bounded sets; there exists a subset X, of X with non-empty interior
such that the sequence is uniformly bounded on X,.

Deduce from this the classical versions of the principle of uniform
boundedness and the Banach-Steinhaus theorem.

10. Show that under the conditions of Chapter II, Exercise 14, the
sequence of linear forms f— nf(n"*)(n € N) on E is simply bounded
(and, in fact, uniformly bounded on every convex, circled subset of E
which is complete) but not equicontinuous.

11. Let T be a set. A filter § on T is elementary if it is the section
filter of a sequence {#,} in 7, that is, if the sets F, = {t,: k = n}(n e N)
form a base of §. Show that every filter ® on T which possesses a
countable base is the intersection of all elementary filters § >®. Use
this to extend (4.6) to filters with countable base.

12. (Principle of the Condensation of Singularities. Banach-Steinhaus
[1]). Let E, F be t.v.s. such that E is a Baire space. If H =« Z(E, F)is not
equicontinuous, show that M = {x: H(x) is bounded in F} is a meager
subspace of E. Thus if {#,} is a sequence of subsets of #(E, F)each of
which is not simply bounded, there exists x, € E such that H,(x,) is
unbounded in F for all » € N, and the set of these x, is not meager
inE.

13. Let E= %(I) be the Banach space of continuous complex-
valued functions on the real unit interval 7 = [0, 1] and let H be the
Hilbert space L*(u), where u denotes Lebesgue measure on 1. Identify
E algebraically with a subspace of H, and denote by {g,} any ortho-
normal basis of H which is also a total family in E; for example, the
normalized trigonometric functions. The formal series 3>,[f, gilgx
where [, ] denotes the inner product in H, is called the Fourier ex-
pansion of f (with respect to {g,}). Show that for each given ¢, e/
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such that lim sup L,(#,) = oo, where L,(s) = [| ¥ gi(s) g¥(t)| du(?), there
1

exists a continuous function fe E whose Fourier expansion is un-
bounded (hence not convergent) at ¢ = ¢,. (Establish the result by apply-
ing (4.2).)

14. With the notation of Exercise 13, let P be a countable subset of 7
and let S be a countable family of orthonormal bases in L?(u), each
of which satisfies lim sup L,(t) = oo for all ¢ € P.

(a) Show that there exists an fe€ E whose Fourier expansion with
respect to any member of € is unbounded at each ¢ € P. (Use Exercises
12, 13))

(b) Generalize the foregoing result to the case where X is a metriz-
able, locally compact space, 4 a bounded positive measure on X with
u(G) > 0 for each open G # &, with E = 4(X), H = L*(u) (Chapter II,
Section 2, Examples) and P a countable subset of X such that u({r}) =0
for every t € P.

15. Let {a,,} be a numerical double sequence such that for each

m e N there exists a summable sequence {x™: n e N} el' for which
@

a,,x™ is not convergent. There exists a sequence {x,} €!' such
=1

that 3 a,,x, is divergent for all m e N. (Use Exercise 12.)
=1

16. Let E, F, G be t.v.s. over K.

(a) Show that a bilinear map on E x F into G which is continuous
at (0, 0), is continuous (everywhere).

(b) Let H be a vector space of (S, I)-hypocontinuous bilinear maps
of E x Finto G. Show that H is a t.v.s. under the topology of € x T-
convergence (it suffices that each fe H be either S- or T-hypocon-
tinuous).

(c) A family B of bilinear maps of E x F into G is S-equihypo-
continuous if, for each S € &, the family {f,: x €S, e B} is equi-
continuous in Z(F, G). Define the corresponding notions of T- and
(S, ¥)-equihypocontinuity, and prove two propositions analogous
to (5.2) and (5.3).

17. Let E be an infinite-dimensional normable space and let F be its
weak dual (E’, o(E’, E)). The bilinear form (x, f)— f(x) is T-hypo-
continuous where ¥ is the family of all equicontinuous subsets of
F; but it is not S-hypocontinuous for any saturated family & of
bounded subsets of E other than the one generated by the finite
subsets of E, and a fortiori not continuous on E x F.(Let S be a
bounded subset of E not contained in a finite-dimensional subspace;
whatever the 0-neighborhood U = {f:|f(x;)| £ 1}, there exists ye .S
and, by the Hahn-Banach theorem, fe U such that f(y) is a given
number.)

18. Let E, F be vector spaces of respective dimensions d,, d, over K.

(a) The map x® y— [x* > x*(x)y] induces an isomorphism of
E ® F into L(E*, F); similarly, E ® F is isomorphic with a subspace of
L(F*, E).
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(b) For each u € E® F, the minimal number k(=0) of summands

x; ® y; such that u = ¥ x; ® y;, is identical with the dimension r of
1 n

the range of v: x* - v(x*) = 3 x*(x;)y;. In each representation of u
1

by r summands, both sets {x;} and {y;} are linearly independent.

(c) The isomorphism of (a) is onto L(E*, F) if and only if at least one
of the cardinals d,, d, is finite.

(d) The dimension of E® F is d,d,.

19. Let E(i=1,...n), G be vector spaces over K. A mapping
(X1, ooes Xp) = f (%45 ..., x,) Of TT,E; into G is multilinear (n-linear) if
each of the partial maps E;— G, obtained by fixing the coor-
dinates x;(j # i) of x; is linear. Define the tensor product F = ®;E,,
and if E; are l.c.s. define the projective tensor product topology
on F. Formulate and prove for this case results analogous to those in
Section 6.

20. If E, F are vector spaces and p, ¢ are semi-norms on E, F, res-
pectively, the tensor product p ® g is a norm on £ ® F if and only if both
p and g are norms.

21. Let E, F, G be normed spaces with respective norms p,gq, r.
A norm s on E® F is called a cross-norm of p and ¢ if for all
(x, ) € Ex F, s(x ® y) = p(x)q().

(a) The tensor product p ® g can be characterized as the unique
norm on E ® F such that for each normed space (G, r), the canonical
isomorphism of #(E® F, G) onto #(E, F; G) (cf. (6.2)) is a norm
isomorphism, #(E, F; G) being provided with the norm f— ||f]| =
sup{r[f(x, »)]: p(x) £ 1, q(y) £ 1}.

(b) If s is any cross-norm of p and ¢, then s £ p ® q.

(c) Denote by E’ (respectively, F’) the strong dual of E (respectively,
of F) with their standard norms p’, ¢’. Show that

u—s(u) =sup{), X'y’ u=Y x; @y, p(x)<1,q'(y)< 1}

is across-normon E ® Fthat generates the topology of bi-equicontinuous
convergence (Section 6).

(d) If ¢ is a cross-norm of p and g, the following assertions are
equivalent:

(1) s =t = p®gq, where s is the norm introduced in (c).

(2) The functional z — #'(z) = sup{|z(w)|: t(w) < 1}, where we EQ F
and z € E' ® F’ is a cross-norm of p’ and ¢’. (Cf. Schatten [1].)

22. Let E, F be lc.s., x the canonical bilinear map of E x F into
E ® F, I, the inductive tensor product topology, and E® F the com-
pletion of (E® F, T)).

(a) For every lc.s. G, the isomorphism of (6.1) maps (EQ® F,
T,), G) onto B(E, F; G).

(b) T, is the inductive topology (Chapter II, Section 6) with respect
to the family of mappings {x,, x,: x € E, y € F} of F (respectively, E)
into £ ® F. Deduce from this that if £, F are both bornological or both
barreled, £® F is barreled. (Use Exercise 15, Chapter II).
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23. Let E be a Hausdorff t.v.s.
(1) A formal series E x,, where x, eE (n e N) is convergent to
x € E if the sequence of partlal sums s, = Z xk (n € N) converges to x
in E. This is expressed by writing x = 21 x

(i) A family {x,: « € A} = E is summable to x € E if for each 0-
neighborhood U in E, there exists a finite subset ®; = A such that for

each finite set @ satisfying &, =« ® = A, it is true that Y x,ex+ U.
aed

This is expressed by writing x = Y, x, .If A = Nand {x,} is summable

(a summable sequence), the series Z x, is called unconditionally
convergent.

(iii) Suppose E to be locally convex. A family {x,: « € A} E is ab-
solutely summable if it is summable in E and if for each continuous
semi-norm p on E, the family {p(x,): « € A} is summable (in R). If

A =N and {x,} is absolutely summable, the series Z x, is called
absolutely convergent.

(a) If E is complete, {x,: « € A} is summable if and only if for each
0-neighborhood U in E, there exists a finite subset ®, = A such that
> eaXs € Uwhenever ® < A s finite and ® n &, = . If Eisa complete
l.c.s., {x,: @ € A} is absolutely summable if for each member p of a gener-
ating family of semi-norms the family {p(x,): « € A} is summable.

(b) (ii) and (iii) are equivalent if E is finite dimensional (hence locally
convex).

(c) If E is a l.c.s. on which there exists a continuous norm, an ab-
solutely summable family in E cannot contain more than countably
many non-zero members.

(d) Let E be a complete l.c.s., A an index set of cardinality d > 0,and
denote by S, the subspace of E* whose elements constitute absolutely
summable families in E. Let & be a generating family of semi-norms
on E; under the topology generated by the semi-norms x — p(x) =
>.0(x,) (p € P), S, is a l.c.s. isomorphic with I} & E. (Use (6.5).)

(e) Let {x,: « € A} be a summable family in the l.c.s. E. Show that
for each equicontinuous set B = E’, 3| x'(x,)| converges uniformly with
respect to x’ € B.

24. Let E, F be normed spaces and identify E’ ® F with a subspace
of Y(E, F) (Section 7). The topology of bounded convergence on
Z(E, F) induces the topology of bi-equicontinuous convergence on
E’' ® F (E’ being the strong dual of E). (By an application of the Hahn-
Banach theorem (II, 3.2), Corollary, show that for any normed space G
and z € G, |z|| = sup{|z'(2)|: 2’ € G', ||z’|| £ 1}, and use Exercise 21(c).)

25. Let E be a gestufter Raum (Kothe [1]). Algebraically, E is defined
as follows: Let {o,: n € N} be a family of sequences o, = (s¢, s¥, ...)
of real numbers, such that 0 < s < s"*1 for all m,n e N and such
that for each m, there exists n satlsfymg s(’" > 0. Consider the subspace
of K§ for whose elements x = (x, x,,...) each of the sequences
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{x,5%: m e N}(n e N) is summable (Exercise 23). Provided with the
topology generated by the semi-norms

x=p) = Ykl (neN)

E is an (F)-space. This space is nuclear if and only if for each #n, there
exists p € N such that Z sM/sintP) < + o0, (Replace any quotients 0/0

by 0.) (For the proof use (7.2)(c). Concerning the necessity of the
condition, note that the dual E’ of E can be identified with the space of
sequences, each of which is absolutely majorized by some no,. If B,
denotes the set of sequences {y,,} such that |y,,| < s& for all m, the family
{nB,} is a fundamental family of equicontinuous subsets of E’.)

26. A family {x,: « € A} in a t.v.s. E is topologically free if for each
o € A, x, is not contained in the smallest closed subspace of E containing
the subfamily {x,: § # a}. Let E be a separable (B)-space (more gener-
ally, a separable barreled space), and let {x,} be a maximal, topo-
logically free sequence in E. Show that there exists a unique sequence
{f,} = E’ biorthogonal to {x,}, and show that {x,} is a Schauder basis
of E if for each x € E and each g € E’, the numerical sequence

{ki fu(x)g(x): n € N} is bounded.

27. Let Sbe a set, Fal.c.s. and let G be a vector space of functions on
S into F that are bounded on S. Let ¥ be a fixed 0-neighborhood in F
and let Z be a subset of G such that for each finite subset H = Z, there
exists x € S satifying f(x) ¢ ¥ whenever f € H. The complements of all
these sets Z (as V runs through a base of 0-neighborhoods in F) form
a base at 0 for a locally convex topology on G, called the topology of
almost uniform convergence on S (Brace [1]). If E, F are Banach spaces,
a map u € Z(E, F) is compact if and only if it is a cluster point, for the
topology of almost uniform convergence on the unit ball of E, of a se-
quence in E’ ® F. (Brace [2].)



Chapter IV
DUALITY

The study of a locally convex space in terms of its dual is the central part of
the modern theory of topological vector spaces, for it provides the setting for
the deepest and most beautiful results of the subject; the present elaborate
form of duality theory is largely due to Bourbaki [8] (cf. also Dieudonné [1]
and Dieudonné-Schwartz {1]). The first five sections of this chapter contain
the basic information, the remaining six being concerned with more refined
and advanced results; as in the other chapters of the book, supplementary
information can be found in the exercises. We proceed to survey the chapter
briefly.

Section 1 is concerned with weak topologies, the bipolar theorem and its
first consequences. Section 2 follows with a brief discussion of the adjoint of
a weakly continuous linear map. Section 3 presents the Mackey-Arens
theorem characterizing the locally convex topologies consistent with a given
duality, and Mackey’s theorem on the identity of the respective families of
bounded sets for these topologies. The duality of subspaces and quotients
and the duality of products and direct sums are discussed in detail in Section
4; one obtains the permanence properties of the weak and Mackey topologies,
and some applications are made to the duality of projective and inductive
limits. Section 5 introduces the strong topology on the dual of a locally
convex space, then turns to the discussion of the strong dual and the bidual.
This includes a detailed study of semi-reflexive and reflexive spaces, and the
section concludes with a short discussion of Montel spaces (for these, see
also Exercise 19).

Section 6 presents Grothendieck’s completeness theorem and some related
further going results on metrizable l.c.s., in particular, the theorems of
Banach-Dieudonné and Krein-Smulian; it ends with a brief discussion of
Grothendieck’s (DF)-spaces (see also Exercises 24, 32, 33). Section 7 con-
tinues the study of adjoints, now for densely defined closed linear maps of
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one l.c.s. into another. There are dual characterizations of continuous and
open linear maps, followed by several results relating to Fréchet and Banach
spaces. The section also paves the way for the general open mapping and
closed graph theorems derived in Section 8. These theorems, essentially due
to Ptak, show a rather unexpected relationship between Banach’s homo-
morphism theorem and the theorem of Krein-Smulian; they provide an
excellent example of the power of duality theory. Section 9 continues the
study of topological tensor products and nuclear spaces from Chapter III,
presenting several fundamental results on nuclear spaces. Section 10 is
devoted to a study of the relationship between the concepts of absolute
summability and nuclear space, and opens an approach (due to Pietsch)
to nuclear spaces independently of the theory of topological tensor products.
As a by-result one obtains the theorem of Dvoretzky-Rogers (for a sharpened
form of the theorem see Exercise 36). The chapter concludes with a section on
weak compactness, a subject that has received a great deal of attention in the
literature; included are the theorems of Eberlein and Krein in their general
versions due to Dieudonné and Grothendieck.

1. DUAL SYSTEMS AND WEAK TOPOLOGIES

Let F, G be a pair of vector spaces over K, and let f be a bilinear form on
F x G satisfying the separation axioms:

(Sy) f(xo,y) =0 for all y € G implies xq =0.
(S,) f(x,y0) =0 for all x € F implies y, =0.

The triple (F, G, f) is called a dual system or duality (over K). It is also
customary to say that f places F and G in duality, or separated duality if the
validity of (S;) and (S,) is to be stressed. To distinguish f from other bilinear
forms on F x G, fis called the canonical bilinear form of the duality, and is
usually denoted by (x, y) = (x, y>. The triple (F, G,< , D) is more con-
veniently denoted by {F, G>.

Examples

1. Let E be a vector space and let E* be its algebraic dual; the bilinear
form (x, x*) = x*(x) = {(x, x*) defines the duality {(E, E*).

2. If E is a locally convex space with (topological) dual E’, then E’
is a subspace of E* separating points in E by Corollary 1 of (II, 4.2);
hence the duality (E, E*) of Example 1 induces a duality {(E, E’) on
the subspace E x E’ of E x E*.

3. Let E, F be l.c.s. with respective duals E’, F'. The algebraic tensor
products £ ® F and E* ® F* are in duality with respect to the bilinear
form determined by {x ® y, x* ® y*> = {(x, x*>{y, y*>. It has been
shown in Chapter III (Section 6) that this duality induces a duality
between E® F and E’ ® F’ (cf. Exercise 2).
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4. Denote by ¢, and w,;, respectively, the direct sum and product of d
copies of the scalar field K. For any vector space A over K such that
¢s=Acw,, let AX be the subspace of w; such that y=(y,)ei”
whenever the family {x,y,} is summable for every x = (x,) € A. The
bilinear form (x, y) > Y .x,», places 4 and 1% in duality (Exercise 5).

If {F, G) is a duality, the mapping x — <{x, y) is, for each y € G, a linear
form f, on F. Since y — f, is linear and, by virtue of (S,), biunivocal, it is an
isomorphism of G into the algebraic dual F* of F; thus G can be identified
with a subspace of F*. This identification will be made in the following unless
the contrary is explicitly stated. Note that under this identification, the
canonical bilinear form of {F, G) is induced by the canonical bilinear form
of {F, F*) (Example 1, above).

In this and the following sections, any proposition on F can also be made
on G by simply interchanging the roles of F and G; this is immediate from
the symmetry of {F, G) with respect to F and G, and will not be repeated.
We begin our investigation with a simple algebraic observation; d;; is, as
usual, the Kronecker symbol.

1.1

Let (F, G) be a duality and let {y;: i =1, ..., n} (n € N) be a linearly indepen-
dent subset of G. There exist n (necessarily linearly independent) elements
x; € F such that {x;, y;> =0;; (i,j=1,...,n).

Proof. The proof is by induction with respect to n. By (S,) the assertion
holds for n = 1; if n > 1 there exists by assumption aset {X;:i=1,...,n — 1}
for which <{X;, y;> = 6;; (i,j =1, ..., n — 1). Let M, be the subspace generated
by the elements X; (1 Si<n—1)and let F, ={xe F: {x,y;> =0,j=1, ...,
n—1}. Clearly, F=F,+ M, is an algebraic direct sum. Now y, cannot
vanish on F,, or else it would be a linear combination of {y;:i =1, ...,n — 1}.
Hence there exists x, € F, such that <{x,, y,> =1 and, defining x; (i =1, ...,
n—1) by x; =X; —<{X;, y,»Xx., We obtain the desired set {x;:i=1, ..., n}.

COROLLARY. Let F be a vector space, and let f; (i =1, ..., n) and g be linear
Jorms on F such that the relations f(x) =0, i =1, ..., n imply g(x) = 0 (equiva-
lently, such that ( i 1(0) = g~ X(0)). Then g is a linear combination of the forms

i=1

fiG=1,..,n).

We recall (Chapter II, Section 5) that the weak topology o(F, G) is the
coarsest topology on F for which the linear forms x — {x, y), ye€ G are
continuous; by (S;) Fis a l.c.s. under o(F, G). If B is any Hamel basis of G,
the topology o(F, G) is generated by the semi-norms x — |<{x, y)|, y € B.

1.2

The dual of (F, o(F, G)) is G, that is, a linear form f on F is o(F, G)-con-
tinuous if and only if it is of the form f(x) = {x, y) for a (unique) y € G.
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Proof. In view of the definition of ¢(F, G), we have to show only that a
given continuous f can be written as indicated. By (III, 1.1) there exist ele-
ments y; € G (i = 1, ..., n) such that | f(x)| < ¢ sup; |[<x, y;>| for all x € F and
asuitable constant c. Viewing the y; as linear forms on F, the corollary of (1.1)
shows f to be a linear combination of the y;, whence the proposition follows.

COROLLARY. Let {F, G) and {F, G|y be dual systems such that G, = G.
Unless G, = G, o(F, G,) is strictly coarser than o(F, G).

1.3

Let {(F, G) be a duality and let G, be a subspace of G; the canonical bilinear
Sform of {F, G) places F and G, in duality if and only if G, is 6(G, F)-dense in G.

Proof. To prove the sufficiency of the condition, we have to show that the
canonical bilinear form satisfies (S;) on F x G,. If G, is weakly dense in G
and (x,, ) =0 for all y e G;, then the o(G, F)-continuity of y — {xq, y>
implies that (x,, y) =0 for all y € G, whence x, =0.

For the necessity of the condition, suppose that {F, G) induces a duality
between F and G,. If G; were not dense in (G, 6(G, F)), there would exist a
¥o € G not contained in the closure G, of G,. Define a linear form f on G, +
[¥o] (Where [y,] is the one-dimensional subspace of G generated by y,) by
f(y) =0 when y € G, and f(y,) = 1; f'is 6(G, F)-continuous on its domain by
(I, 4.2), hence by (II, 4.2) has a continuous extension f to G. By (1.2) f(y) =
{xq, yy forall y € G and an x,, € F. Since (S;) holds on F x G, by assumption,
it follows that x, = 0, which conflicts with f(y,) = 1.

COROLLARY. Let F be a vector space and let G be a subspace of F*. {F, F*)
induces a duality between F and G if and only if G is 6(F*, F)-dense in F*,

Let {F, G) be a duality. For any subset M of F,
M°={yeG:Re{x,y) =1 ifxeM},

where Re{x, y) denotes the real part of {x, y), is a subset of G, called the
polar set (or polar) of M. The absolute polar of M is the polar of the circled
hull of M; it is the subset {y: |<x, y)| £ 1 if x € M} of G. The following facts
are immediate consequences of this definition:

1. &° =G and F° ={0}.

2. If A#0 and AM <= N then N° c 1™ ' M°.

3. For any family {M,} of subsets of F, [UM,]° = M.

4. If © is any saturated family of o(F, G)-bounded subsets of F, the family
of polars {S°: S€&} is a 0-neighborhood base for the S-topology on G.
(G = 2((F, o(F, G)), K).)

5. If Lis a t.v.s., a subset M of its dual L’ is equicontinuous if and only
if the polar M° (with respect to the duality (L, L*}) is a O-neighborhood in L.

The proof of these statements as well as of the following result is left to the
reader.
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14

For any subset M < F, M° is a o(G, F)-closed, convex subset of G containing
0. If M is circled, then so is M°, if M is a subspace of F, M° is a subspace of G.

If M < F, the polar of M° is a subset of F, called the bipolar of M, and is
denoted by M°°; accordingly, the polar of M°° is denoted by M°°°. The
following result, called the bipolar theorem, is a consequence of the Hahn-
Banach theorem and is an indispensable tool in working with dualities.

1.5

Theorem. Let {F, G) be a duality. For any subset M < F, the bipolar M°°
is the o(F, G)-closed, convex hull of M U {0}.

Proof. It follows from (1.4) that M°° is a(F, G)-closed, convex, and con-
tains 0; obviously it also contains M. Thus M; = M°° if M, is the closed,
convex hull of M U {0}; the assertion will be proved when we show that
x ¢ M, implies x ¢ M°°. Suppose that x, ¢ M,. By the second separation
theorem (I, 9.2), there exists a closed real hyperplane separating M, and
{xo} strictly. Since 0 e M,, H is of the form H ={xe F:.f(x) =1} for a
suitable o(F, G)-continuous real linear form f on F. It follows from (1.2)
and (I, 7.2) that f(x) = Re{x, y,» for all x € F and some y, € G. Now since
0 e M,, we have Re{x, yo»> <l if x € M,, hence Re{x,, yo» > 1; it follows
that y, € M = M°, whence x, ¢ M°°.

COROLLARY 1. For any M < F, M°°° = M°.

COROLLARY 2. Let {M,. a € A} be a family of o(F, G)-closed, convex subsets
of F, each containing 0, and let M = (\ ,M,; then the polar of M is the o(G, F)-
closed, convex hull of ), M.

Proof. Let N be the closed, convex hull of (JMS. Since MJ° = M, (€ A)
it follows that N° = [UM]° = \M;° = (M, = M (the first of these equalities
holding by (1.5) and Corollary 1, the second by Remark 3 preceding (1.4)),
hence M° = N°° = N as was to be shown.

It is clear that for any t.v.s. L, the polars (taken in L*) of a 0-neighborhood
base form a fundamental family of equicontinuous sets (cf. Remark 5 above).
For locally convex spaces, the converse is also true:

COROLLARY 3. If E is a l.c.s., then the polars (taken with respect to {E, E"))
of any fundamental family of equicontinuous sets in E’ form a neighborhood
base of 0 in E.

Proof. Let S be a fundamental family of equicontinuous subsets of £’ and
let U be a given O-neighborhood in E; since E is locally convex, U can be
assumed closed and convex, hence o(E, E’)-closed by (11, 9.2), Corollary 1.
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Since U° is equicontinuous, there exists Se€ & with U° < S; it follows that
S° < U°° = U, which proves the assertion.
In slightly greater generality, the last corollary can be restated as follows:

COROLLARY 4. If (and only if) E is a t.v.s. whose topology X is locally convex,
T is the topology of uniform convergence on the equicontinuous subsets of E*.

It follows from the bipolar theorem that for subspaces M < F, M = M°°
if and only if M is closed for o(F, G). Hence the mapping M — M° is one-to-
one from the family of all o(F, G)-closed subspaces of F to the family of all
o(G, F)-closed subspaces of G. More precisely, M — M° is an anti-isomor-
phism of the lattice of closed subspaces of F onto the lattice of closed sub-
spaces of G, the lattice operations being defined by inf(M,, M,) = M, n M,
and sup(M,, M,) = (M, + M,)". Foritis immediate from (1.5) and its corol-
laries that (inf(M,, M,))° = sup(M3, M3) and (sup(M,, M,))° = inf(M3, M3).
It is customary to call the polar M° of a subspace M = F the subspace
of G orthogonal to M (with respect to the duality (F, G)). If F=M, + M,
is the algebraic direct sum of the closed subspaces M; and M,, then
G = (M§ + M3)™ by the preceding; it will be seen below (Section 2) that
the sum is o(F, G)-topological, F = M; @ M,, if and only if G = M{ ® M3
for o(G, F).

The most important and most frequent dualities are the systems {E, E'),
where E is a given l.c.s. (Example 2 above). Note that every dual system
{F, G) can be interpreted in this way; by (1.2) it suffices to endow F with
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